TMS320DM6437ZDU7 Datasheet by Texas Instruments

l TEXAS INSTRUMENTS
1 TMS320DM6437 Digital Media Processor
1.1 Features
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
– 256K-Bit (32K-Byte) L1P ProgramHigh-Performance Digital Media Processor
RAM/Cache [Flexible Allocation](DM6437)
2.5-, 2.-, 1.67-, 1.51-, 1.43-ns InstructionCycle Time
– 640K-Bit (80K-Byte) L1D Data RAM/Cache[Flexible Allocation] 400-, 500-, 600, 660-, 700-MHz C64x+™Clock Rate
– 1M-Bit (128K-Byte) L2 Unified MappedRAM/Cache [Flexible Allocation]– Eight 32-Bit C64x+ Instructions/Cycle 3200, 4000, 4800, 5280, 5600 MIPS
Supports Little Endian Mode Only– Fully Software-Compatible With C64x
Video Processing Subsystem (VPSS) Commercial and Automotive (Q or S suffix)
– Front End Provides:Grades
CCD and CMOS Imager Interface– Low-Power Device (L suffix)
BT.601/BT.656 Digital YCbCr 4:2:2VelociTI.2™ Extensions to VelociTI™
(8-/16-Bit) InterfaceAdvanced Very-Long-Instruction-Word (VLIW)
Preview Engine for Real-Time ImageTMS320C64x+™ DSP Core Processing– Eight Highly Independent Functional Units Glueless Interface to Common VideoWith VelociTI.2 Extensions: DecodersSix ALUs (32-/40-Bit), Each Supports Histogram ModuleSingle 32-Bit, Dual 16-Bit, or Quad 8-Bit
Auto-Exposure, Auto-White Balance andArithmetic per Clock Cycle
Auto-Focus ModuleTwo Multipliers Support Four 16 x 16-Bit
Resize EngineMultiplies (32-Bit Results) per Clock
– Resize Images From 1/4x to 4xCycle or Eight 8 x 8-Bit Multiplies (16-Bit
– Separate Horizontal/Vertical ControlResults) per Clock Cycle
– Back End Provides:– Load-Store Architecture With Non-Aligned
Hardware On-Screen Display (OSD)Support
Four 54-MHz DACs for a Combination of– 64 32-Bit General-Purpose Registers
– Composite NTSC/PAL Video– Instruction Packing Reduces Code Size
– Luma/Chroma Separate Video– All Instructions Conditional
(S-video)– Additional C64x+™ Enhancements
– Component (YPbPr or RGB) VideoProtected Mode Operation
(Progressive)Exceptions Support for Error Detection
Digital Outputand Program Redirection
– 8-/16-bit YUV or up to 24-Bit RGBHardware Support for Modulo Loop
– HD ResolutionAuto-Focus Module Operation
Up to 2 Video WindowsC64x+ Instruction Set Features
External Memory Interfaces (EMIFs)– Byte-Addressable (8-/16-/32-/64-Bit Data)
– 32-Bit DDR2 SDRAM Memory Controller– 8-Bit Overflow Protection
With 256M-Byte Address Space (1.8-V I/O)– Bit-Field Extract, Set, Clear
Supports up to 333-MHz (data rate) Bus– Normalization, Saturation, Bit-Counting
and Interfaces With DDR2-400 SDRAM VelociTI.2 Increased Orthogonality
Asynchronous 8-Bit Wide EMIF (EMIFA)– C64x+ Extensions
With up to 64M-Byte Address ReachCompact 16-bit Instructions
Flash Memory InterfacesAdditional Instructions to Support
– NOR (8-Bit-Wide Data)Complex Multiplies
– NAND (8-Bit-Wide Data)C64x+ L1/L2 Memory Architecture
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this document.
All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Copyright © 2006–2008, Texas Instruments IncorporatedProducts conform to specifications per the terms of the TexasInstruments standard warranty. Production processing does notnecessarily include testing of all parameters.
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
– Supports Media Independent Interface (MII)Enhanced Direct-Memory-Access (EDMA)
– Management Data I/O (MDIO) ModuleController (64 Independent Channels)
VLYNQ™ Interface (FPGA Interface)Two 64-Bit General-Purpose Timers (EachConfigurable as Two 32-Bit Timers)
Three Pulse Width Modulator (PWM) OutputsOne 64-Bit Watch Dog Timer
On-Chip ROM BootloaderTwo UARTs (One with RTS and CTS Flow
Individual Power-Savings ModesControl)
Flexible PLL Clock GeneratorsMaster/Slave Inter-Integrated Circuit (I
2
C
IEEE-1149.1 (JTAG™)Bus™)
Boundary-Scan-CompatibleTwo Multichannel Buffered Serial Ports
Up to 111 General-Purpose I/O (GPIO) Pins(McBSPs)
(Multiplexed With Other Device Functions)– I2S and TDM
Packages:– AC97 Audio Codec Interface
– 361-Pin Pb-Free PBGA Package– SPI
(ZWT Suffix), 0.8-mm Ball Pitch– Standard Voice Codec Interface (AIC12)
– 376-Pin Plastic BGA Package Telecom Interfaces – ST-Bus, H-100
(ZDU Suffix), 1.0-mm Ball Pitch– 128 Channel Mode
0.09-µm/6-Level Cu Metal Process (CMOS)Multichannel Audio Serial Port (McASP0)
3.3-V and 1.8-V I/O, 1.2-V Internal– Four Serializers and SPDIF (DIT) Mode
(-7/-6/-5/-4/-L/-Q6/-Q5/-Q4)16-Bit Host-Port Interface (HPI)
3.3-V and 1.8-V I/O, 1.05-V InternalHigh-End CAN Controller (HECC)
(-7/-6/-5/-4/-L/-Q5)32-Bit 33-MHz, 3.3-V Peripheral Component
ApplicationsInterconnect (PCI) Master/Slave Interface
– Digital Media10/100 Mb/s Ethernet MAC (EMAC)
– Networked Media Encode/Decode– IEEE 802.3 Compliant
– Video Imaging
TMS320DM6437 Digital Media Processor2Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU732
1.2 Description
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The TMS320C64x+™ DSPs (including the TMS320DM6437 device) are the highest-performancefixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6437 device is based on thethird-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecturedeveloped by Texas Instruments (TI), making these DSPs an excellent choice for digital mediaapplications. The C64x+™ devices are upward code-compatible from previous devices that are part of theC6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instructionset from previous devices.
Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP andC64x+ CPU, respectively.
With performance of up to 5600 million instructions per second (MIPS) at a clock rate of 700 MHz, theC64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possessesthe operational flexibility of high-speed controllers and the numerical capability of array processors. TheC64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highlyindependent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). Theeight functional units include instructions to accelerate the performance in video and imaging applications.The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2800 millionMACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5600 MMACS. For more detailson the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide(literature number SPRU732 ).
The DM6437 also has application-specific hardware logic, on-chip memory, and additional on-chipperipherals similar to the other C6000 DSP platform devices. The DM6437 core uses a two-levelcache-based architecture. The Level 1 program memory/cache (L1P) consists of a 256K-bit memoryspace that can be configured as mapped memory or direct mapped cache, and the Level 1 data (L1D)consists of a 640K-bit memory space —384K-bit of which is mapped memory and 256K-bit of which canbe configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2)consists of a 1M-bit memory space that is shared between program and data space. L2 memory can beconfigured as mapped memory, cache, or combinations of the two.
The peripheral set includes: 2 configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with amanagement data input/output (MDIO) module; a 4-bit transmit, 4-bit receive VLYNQ interface; aninter-integrated circuit (I2C) Bus interface; two multichannel buffered serial ports (McBSPs); a multichannelaudio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2independent 32-bit timers; 1 64-bit watchdog timer; a user-configurable 16-bit host-port interface (HPI); upto 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes,multiplexed with other peripherals; 2 UARTs with hardware handshaking support on 1 UART; 3 pulsewidth modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; 1peripheral component interconnect (PCI) [33 MHz]; and 2 glueless external memory interfaces: anasynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speedsynchronous memory interface for DDR2.
The DM6437 device includes a Video Processing Subsystem (VPSS) with two configurable video/imagingperipherals: 1 Video Processing Front-End (VPFE) input used for video capture, 1 Video ProcessingBack-End (VPBE) output.
The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine(Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. TheCCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices(CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOSsensor or CCD and converts from an RGB Bayer Pattern to YUV422. The Histogram and H3A modulesprovide statistical information on the raw color data for use by the DM6437. The Resizer accepts imagedata for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N isbetween 64 and 1024.
Submit Documentation Feedback TMS320DM6437 Digital Media Processor 3
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and aVideo Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separateOSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute windowallowing up to 8 levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz,providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENCalso provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6437 andthe network. The DM6437 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps)and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS)support.
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order toenumerate all PHY devices in the system.
The I2C and VLYNQ ports allow DM6437 to easily control peripheral devices and/or communicate withhost processors.
The high-end controller area network (CAN) controller [HECC] module provides a network protocol in aharsh environment to communicate serially with other controllers, typically in automotive applications.
The rich peripheral set provides the ability to control external peripheral devices and communicate withexternal processors. For details on each of the peripherals, see the related sections later in this documentand the associated peripheral reference guides.
The DM6437 has a complete set of development tools. These include C compilers, a DSP assemblyoptimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility intosource code execution.
TMS320DM6437 Digital Media Processor4Submit Documentation Feedback
l TEXAS INSTRUMENTS newer H amuse" was ‘DbDAC can Mm x mm Em, mm Vmeu 3A H IVENC? mama \ \ 1 summer \ \nlerlaca Prewew M mb DAG ‘ HART Walchflag nmer DMA ngnmy‘D /_/\_\ DDR2 Mam cw «32m
1.3 Functional Block Diagram
JTAG Interface
System Control
PLLs/Clock Generator
Input
Clock(s)
Power/Sleep Controller
Pin Multiplexing
DSP Subsystem
C64x+t DSP CPU
32 KB
L1 Pgm
128 KB L2 RAM
80 KB
L1 Data
BT.656,
Y/C,
Raw (Bayer)
Video Processing Subsystem (VPSS)
CCD
Controller
Video
Interface
Front End
Resizer
Histogram/
3A
Preview
10b DAC
On-Screen
Display
(OSD)
Video
Encoder
(VENC)
10b DAC
10b DAC
10b DAC
Back End 8b BT.656,
Y/C,
24b RGB
NTSC/
PAL,
S-Video,
RGB,
YPbPr
Switched Central Resource (SCR)
Peripherals
EDMA
I2C HECC UART
Serial Interfaces
DDR2
Mem Ctlr
(32b)
Async EMIF/
NAND/
(8b)
Program/Data Storage
Watchdog
Timer PWM
System
General-
Purpose
Timer
PCI
(33 MHz) VLYNQ EMAC
With
MDIO
Connectivity
HPI
McASP McBSP
OSC
Boot ROM
16b
GPIO
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 1-1 shows the functional block diagram of the DM6437 device.
Figure 1-1. TMS320DM6437 Functional Block Diagram
Submit Documentation Feedback TMS320DM6437 Digital Media Processor 5
l TEXAS INSTRUMENTS 1 1 Q g fl 5 7 @ g g 5 m 3 m L2 M L3 m L7 m L5 & L“ m 7,0 & l2 23,7 E 24,! B m B L7 E g] 92 & 95 m 99 m 1 52 m 1 54 234‘ 156 28;? 1 56 g 153 & 2977 1,58 E m & m 00 ‘3 o
Contents
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
1 TMS320DM6437 Digital Media Processor ........... 16 Peripheral Information and ElectricalSpecifications ......................................... 1621.1 Features .............................................. 1
6.1 Parameter Information ............................. 1621.2 Description ............................................ 3
6.2 Recommended Clock and Control Signal Transition1.3 Functional Block Diagram ............................ 5
Behavior ............................................ 163Revision History ............................................... 7
6.3 Power Supplies .................................... 1632 Device Overview ......................................... 8
6.4 Enhanced Direct Memory Access (EDMA3)2.1 Device Characteristics ................................ 8
Controller ........................................... 1702.2 CPU (DSP Core) Description ......................... 9
6.5 Reset ............................................... 1832.3 C64x+ CPU .......................................... 12
6.6 External Clock Input From MXI/CLKIN Pin ........ 1922.4 Memory Map Summary ............................. 13
6.7 Clock PLLs ......................................... 1942.5 Pin Assignments .................................... 17
6.8 Interrupts ........................................... 2002.6 Terminal Functions .................................. 25
6.9 External Memory Interface (EMIF) ................. 2032.7 Device Support ...................................... 70
6.10 Video Processing Sub-System (VPSS) Overview .2112.8 Device and Development-Support Tool
6.11 Universal Asynchronous Receiver/TransmitterNomenclature ....................................... 70
(UART) ............................................. 2342.9 Documentation Support ............................. 72
6.12 Inter-Integrated Circuit (I2C) ....................... 2373 Device Configurations ................................. 73
6.13 Host-Port Interface (HPI) Peripheral ............... 2413.1 System Module Registers ........................... 73
6.14 Multichannel Buffered Serial Port (McBSP) ........ 2463.2 Power Considerations ............................... 74
6.15 Multichannel Audio Serial Port (McASP0)Peripheral .......................................... 2563.3 Clock Considerations ................................ 77
6.16 High-End Controller Area Network Controller3.4 Boot Sequence ...................................... 80
(HECC) ............................................. 2643.5 Configurations At Reset ............................. 92
6.17 Ethernet Media Access Controller (EMAC) ........ 2703.6 Configurations After Reset .......................... 95
6.18 Management Data Input/Output (MDIO) .......... 2773.7 Multiplexed Pin Configurations ...................... 99
6.19 Timers .............................................. 2783.8 Device Initialization Sequence After Reset ........ 152
6.20 Peripheral Component Interconnect (PCI) ......... 2813.9 Debugging Considerations ......................... 154
6.21 Pulse Width Modulator (PWM) ..................... 2874 System Interconnect ................................. 156
6.22 VLYNQ ............................................. 2894.1 System Interconnect Block Diagram ............... 156
6.23 General-Purpose Input/Output (GPIO) ............. 2935 Device Operating Conditions ....................... 158
6.24 IEEE 1149.1 JTAG ................................. 2975.1 Absolute Maximum Ratings Over Operating
7 Mechanical Data ....................................... 299Temperature Range (Unless Otherwise Noted) ... 158
7.1 Thermal Data for ZWT ............................. 2995.2 Recommended Operating Conditions ............. 159
5.3 Electrical Characteristics Over Recommended
7.1.1 Thermal Data for ZDU ............................. 300Ranges of Supply Voltage and Operating
7.1.2 Packaging Information ............................. 300Temperature (Unless Otherwise Noted) ........... 160
Contents 6Submit Documentation Feedback
l TEXAS INSTRUMENTS
Revision History
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history highlights the technical changes made to the SPRS345C device-specificdata manual to make it an SPRS345D revision.
Scope: Applicable updates to the TMS320DM643x DMP, specifically relating to the TMS320DM6437device, have been incorporated.Added 660- and 700-MHz C64x+™ device speeds.Added designators for low-power (-L) devices.
SEE ADDITIONS/MODIFICATIONS/DELETIONS
Global
Updated/Changed signal name from " C_WE" to "C_WE"Updated/Changed signal name from "C_WEN" to "C_WE"
Section 1.1 Added "5280, 5600 MIPS" to "High-Performance Digital Signal Processor (DM6437)" bullet
Section 1.2
In first paragraph, updated/changed the following:– First sentence from "With performance up to 4800 million instructions per second (MIPS) at a clockrate of 600 MHz..." to "With performance up to 5600 million instructions per second (MIPS) with aclock rate of 700 MHz..."– Fifth sentence from "The DSP core can produce...for a total of 2400 million MACs per second...or atotal of 4800 MMACS." to "The DSP core can produce...for a total of 2800 million MACs persecond...or a total of 5600 MMACS."
Section 2.6 Table 2-24 ,Multichannel Audio Serial Port (McASP0) Terminal Functions:Updated/Changed AFSR0/DR0/GP[100] pin description from "... frame synchronization AFSX0..." to"...frame synchronization AFSR0..."Updated/Changed AFSX0/DX1/GP[107] pin description from "...frame synchronization AFSR0..." to"...frame synchronization AFSX0..."
Table 2-21 ,DAC [Part of VPBE] Terminal Functions:Updated/Changed V
DDA_1P1V
description
Section 2.8 Updated/Changed Figure 2-10 ,Device Nomenclature, to reflect new device speeds and low-powerdesignator (-L suffix).
Section 5 Added footnote to Section 5.1 ,Absolute Maximum Ratings Over Operating Temperature Range (UnlessOtherwise Noted).
Section 5 Updated/Changed I
CDD
and I
DDD
test conditions and footnote in Section 5.3 ,Electrical Characteristics OverRecommended Ranges of Supply Voltage and Operating Temperature (Unless Otherwise Noted).
Section 6.7.1 Table 6-15 ,PLLC1 Clock Frequency Ranges:Updated/Changed PLLOUT 1.2V-CV
DD
max value from "700 MHz" to "600 MHz" for-6/-5/-4/-L/-Q6/-Q5/-Q4 devices.Updated/Changed SYSCLK1 1.05V-CV
DD
max value from "560 MHz" to "520 MHz" for -7 devices.
Section 5.2 Deleted "Future variants..." footnote from table
Section 6.7.1 Updated/Changed sentence from "TI requires EMI filter manufacturer Murata..." to "TI recommends EMIfilter manufacturer Murata..."
Section 6.7.4 Deleted "(-4, -4Q, -4S, -5, -5Q, -5S, -6)" from Table 6-19 title, Timing Requirements for MXI/CLKIN.
Submit Documentation Feedback Revision History 7
l TEXAS INSTRUMENTS SPRZZSO
2 Device Overview
2.1 Device Characteristics
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-1 , provides an overview of the TMS320DM6437 DSP. The tables show significant features of theDM6437 device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and thepackage type with pin count.
Table 2-1. Characteristics of the DM6437 Processor
HARDWARE FEATURES DM6437
DDR2 Memory Controller (16-/32-bit bus width) [1.8 V I/O]
Asynchronous (8-bit bus width),Asynchronous EMIF [EMIFA]
RAM, Flash, (8-bit NOR or 8-bit NAND)
EDMA3 1 (64 independent channels, 8 QDMA channels)
2 64-bit General PurposeTimers (configurable as 2 64-bit or 4 32-bit)1 64-bit Watch Dog
UARTs 2 (one with RTS and CTS flow control)
I2C 1 (Master/Slave)Peripherals
McBSPs 2Not all peripherals pins
McASP 1 (4 serailizers)are available at the sametime (For more detail, see
10/100 Ethernet MAC (EMAC) with
1the Device Configurations
Management Data Input/Output (MDIO)section).
VLYNQ 1
General-Purpose Input/Output Port (GPIO) Up to 111 pins
PWM 3 outputs
HPI (16-bit) 1
PCI (32-bit), [33-MHz] 1
1 Input (VPFE)Configurable Video Ports
1 Output (VPBE)
HECC 1
Size (Bytes) 240KB RAM, 64KB ROM
32K-Byte (32KB) L1 Program (L1P) RAM/Cache(Cache up to 32KB)On-Chip Memory
Organization 80KB L1 Data (L1D) RAM/Cache (Cache up to 32KB)128KB Unified Mapped RAM/Cache (L2)64KB Boot ROM
Revision ID Register (MM_REVID.[15:0])
See the TMS320DM6437/35/33/31 Digital MediaMegaModule Rev ID
(address location: 0x0181 2000)
Processor (DMP) [Silicon Revisions 1.1 and 1.0]Silicon Errata (literature number SPRZ250 ).CPU ID + CPU Rev ID Control Status Register (CSR.[31:16])
JTAGID register See Section 6.24.1 ,JTAG ID (JTAGID) RegisterJTAG BSDL_ID
(address location: 0x01C4 0028) Description(s)
700 (-7)660 (-Q6)CPU Frequency
(1) (2)
MHz 600 (-6/-L)
500 (-5/-Q5)
400 (-4/-Q4)
2.5 ns (-4/-Q4)
2 ns (-5/-Q5)Cycle Time
(1) (2)
ns 1.67 ns (-6/-L)1.51 ns (-Q6)1.43 ns (-7)
(1) Performance numbers assume core voltage is set to 1.2V.(2) Applies to "tape and reel" part number counterparts as well. For more information, see Section 2.8 ,Device and Development-SupportTool Nomenclature.
Device Overview8Submit Documentation Feedback
l TEXAS INSTRUMENTS
2.2 CPU (DSP Core) Description
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-1. Characteristics of the DM6437 Processor (continued)
HARDWARE FEATURES DM6437
1.2 V(-7/ -6/-5/ -4/-L/-Q6/-Q5/-Q4)Core (V)Voltage
(2)
1.05 V(-7/-6/-5/-4/-L/-Q5)
I/O (V) 1.8 V, 3.3 V
MXI/CLKIN frequency multiplierPLL Options x1 (Bypass), x14 to x 30(27 MHz reference)
16 x 16 mm, 0.8 mm pitch 361-Pin BGA (ZWT)BGA Package(s)
23 x 23 mm, 1.0 mm pitch 376-Pin BGA (ZDU)
Process Technology µm 0.09 µm
Product Preview (PP), Advance Information (AI),Product Status
(3)
PDor Production Data (PD)
(3) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of TexasInstruments standard warranty. Production processing does not necessarily include testing of all parameters.
The C64x+ Central Processing Unit (CPU) consists of eight functional units, two register files, and twodata paths as shown in Figure 2-1 . The two general-purpose register files (A and B) each contain32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can bedata address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bitdata, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values arestored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing oneinstruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L unitsperform a general set of arithmetic, logical, and branch functions. The .D units primarily load data frommemory to the register file and store results from the register file into memory.
The C64x+ CPU extends the performance of the C64x core through enhancements and new features.
Each C64x+ .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies withadd/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support forGalois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs andmodems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputsand produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with roundingcapability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The32 x 32 bit multiply instructions provide the extended precision necessary for audio and otherhigh-precision algorithms on a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on apair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit dataperforming dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C64x+ core enhances the .S unit in several ways. In the C64x core, dual 16-bit MIN2 and MAX2comparisons were only available on the .L units. On the C64x+ core they are also available on the .S unitwhich increases the performance of algorithms that do searching and sorting. Finally, to increase datapacking and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bitand dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Packinstructions return parallel results to output precision including saturation support.
Other new features include:
Submit Documentation Feedback Device Overview 9
l TEXAS INSTRUMENTS SPRU732 SPRU871 SPRAA84 SPRU862
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops wheremultiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code sizeassociated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many commoninstructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C64x+compiler can restrict the code to use certain registers in the register file. This compression isperformed by the code generation tools.
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bitmultiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois fieldmultiplication.
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C64x+ CPU is able todetect and respond to exceptions, both from internally detected sources (such as illegal op-codes) andfrom system events (such as a watchdog time expiration).Privilege - Defines user and supervisor modes of operation, allowing the operating system to give abasic level of protection to sensitive resources. Local memory is divided into multiple pages, each withread, write, and execute permissions.Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, afree-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C64x+ CPU and its enhancements over the C64x architecture, see the followingdocuments:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732 )TMS320C64x+ DSP Megamodule Reference Guide (literature number SPRU871 )TMS320C64x to TMS320C64x+ CPU Migration Guide Application Report (literature number SPRAA84 )TMS320C64x+ DSP Cache User's Guide (literature number SPRU862 )
10 Device Overview Submit Documentation Feedback
l TEXAS INSTRUMENTS DaIa path A Dan path B 1, 5702 m d5} Even d5} lung SH: sn :7 sm lung in: m" d5} ma d5} '5‘ 5ch 5702 mm mm sn:2 srcY 52 add US! m" :15! lung src STZIA STeb long an m" :15! m :15! ,Lz sn:2
src2
src2
.D1
.M1
.S1
.L1
long src
odd dst
src2
src1
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b
LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Odd
register
file B
(B1, B3,
B5...B31)
.D2 src1
dst
src2
DA2
LD2a
LD2b
src2
.M2 src1
dst1
.S2
src1
even dst
long src
odd dst
ST2a
ST2b
long src
.L2
even dst
odd dst
src1
Data path B
Control Register
32 MSB
32 LSB
dst2 (A)
32 MSB
32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B)
(A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB.
B. On .M unit, dst1 is 32 LSB.
C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 2-1. TMS320C64x+™ CPU (DSP Core) Data Paths
Submit Documentation Feedback Device Overview 11
l TEXAS INSTRUMENTS
2.3 C64x+ CPU
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The C64x+ core uses a two-level cache-based architecture. The Level 1 Program memory/cache (L1P)consists of 32 KB memory space that can be configured as mapped memory or direct mapped cache. TheLevel 1 Data memory/cache (L1D) consists of 80 KB—48 KB of which is mapped memory and 32 KB ofwhich can be configured as mapped memory or 2-way set associated cache. The Level 2 memory/cache(L2) consists of a 128 KB memory space that is shared between program and data space. L2 memory canbe configured as mapped memory, cache, or a combination of both.
Table 2-2 shows a memory map of the C64x+ CPU cache registers for the device.
Table 2-2. C64x+ Cache Registers
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 0000 L2CFG L2 Cache configuration register
0x0184 0020 L1PCFG L1P Size Cache configuration register
0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register
0x0184 0040 L1DCFG L1D Size Cache configuration register
0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC - Reserved
0x0184 1000 EDMAWEIGHT L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC - Reserved
0x0184 2000 L2ALLOC0 L2 allocation register 0
0x0184 2004 L2ALLOC1 L2 allocation register 1
0x0184 2008 L2ALLOC2 L2 allocation register 2
0x0184 200C L2ALLOC3 L2 allocation register 3
0x0184 2010 - 0x0184 3FFF - Reserved
0x0184 4000 L2WBAR L2 writeback base address register
0x0184 4004 L2WWC L2 writeback word count register
0x0184 4010 L2WIBAR L2 writeback invalidate base address register
0x0184 4014 L2WIWC L2 writeback invalidate word count register
0x0184 4018 L2IBAR L2 invalidate base address register
0x0184 401C L2IWC L2 invalidate word count register
0x0184 4020 L1PIBAR L1P invalidate base address register
0x0184 4024 L1PIWC L1P invalidate word count register
0x0184 4030 L1DWIBAR L1D writeback invalidate base address register
0x0184 4034 L1DWIWC L1D writeback invalidate word count register
0x0184 4038 - Reserved
0x0184 4040 L1DWBAR L1D Block Writeback
0x0184 4044 L1DWWC L1D Block Writeback
0x0184 4048 L1DIBAR L1D invalidate base address register
0x0184 404C L1DIWC L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF - Reserved
0x0184 5000 L2WB L2 writeback all register
0x0184 5004 L2WBINV L2 writeback invalidate all register
0x0184 5008 L2INV L2 Global Invalidate without writeback
0x0184 500C - 0x0184 5027 - Reserved
0x0184 5028 L1PINV L1P Global Invalidate
0x0184 502C - 0x0184 5039 - Reserved
0x0184 5040 L1DWB L1D Global Writeback
0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate
0x0184 5048 L1DINV L1D Global Invalidate without writeback
Device Overview12 Submit Documentation Feedback
l TEXAS INSTRUMENTS
2.4 Memory Map Summary
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-2. C64x+ Cache Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 8000 - 0x0184 80BC MAR0 - MAR47 Reserved (corresponds to byte address 0x0000 0000 - 0x2FFF FFFF)
Memory Attribute Registers for PCI Data (corresponds to byte address0x0184 80C0 - 0x0184 80FC MAR48 - MAR63
0x3000 0000 - 0x3FFF FFFF)
0x0184 8100 - 0x0184 8104 MAR64 - MAR65 Reserved (corresponds to byte address 0x4000 0000 - 0x41FF FFFF)
Memory Attribute Registers for EMIFA0x0184 8108 - 0x0184 8124 MAR66 - MAR73
(corresponds to byte address 0x4200 0000 - 0x49FF FFFF)
0x0184 8128 - 0x0184 812C MAR74 - MAR75 Reserved (corresponds to byte address 0x4A00 0000 - 0x4BFF FFFF)
Memory Attribute Registers for VLYNQ (corresponds to byte address0x0184 8130 - 0x0184 813C MAR76 - MAR79
0x4C00 0000 - 0x4FFF FFFF)
0x0184 8140- 0x0184 81FC MAR80 - MAR127 Reserved (corresponds to byte address 0x5000 0000 - 0x7FFF FFFF)
Memory Attribute Registers for DDR20x0184 8200 - 0x0184 823C MAR128 - MAR143
(corresponds to byte address 0x8000 0000 - 0x8FFF FFFF)
0x0184 8240 - 0x0184 83FC MAR144 - MAR255 Reserved (corresponds to byte address 0x9000 0000 - 0xFFFF FFFF)
Table 2-3 shows the memory map address ranges of the device. Table 2-4 depicts the expanded map ofthe Configuration Space (0x0180 0000 through 0x0FFF FFFF). The device has multiple on-chip memoriesassociated with its two processors and various subsystems. To help simplify software development aunified memory map is used where possible to maintain a consistent view of device resources across allbus masters.
Submit Documentation Feedback Device Overview 13
l TEXAS INSTRUMENTS SPRAAGO
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-3. Memory Map Summary
START END SIZE C64x+ EDMA PERIPHERAL VPSS PCIADDRESS ADDRESS (Bytes) MEMORY MAP MEMORY MAP MEMORY MAP MEMORY MAP
0x0000 0000 0x000F FFFF 1M Reserved
0x0010 0000 0x0010 FFFF 64K Boot ROM
0x0011 0000 0x007F FFFF 7M-64K Reserved
0x0080 0000 0x0081 FFFF 128K L2 RAM/Cache
(1)
0x0082 0000 0x00E0 7FFF 6048K Reserved
0x00E0 8000 0x00E0 FFFF 32K L1P RAM/Cache
(1)
Reserved Reserved
0x00E1 0000 0x00F0 3FFF 976K Reserved
0x00F0 4000 0x00F0 FFFF 48K L1D RAM
0x00F1 0000 0x00F1 7FFF 32K L1D RAM/Cache
(1)
0x00F1 8000 0x017F FFFF 9120K Reserved
0x0180 0000 0x01BF FFFF 4M CFG Space
0x01C0 0000 0x01FF FFFF 4M CFG Bus Peripherals CFG Bus Peripherals CFG Bus Peripherals
0x0200 0000 0x100F FFFF 225M Reserved
0x1010 0000 0x1010 FFFF 64K Boot ROM Reserved Reserved
0x1011 0000 0x107F FFFF 7M-48K Reserved
0x1080 0000 0x1081 FFFF 128K L2 RAM/Cache
(1)
L2 RAM/Cache
(1)
L2 RAM/Cache
(1)
0x1082 0000 0x10E0 7FFF 6048K Reserved Reserved Reserved
0x10E0 8000 0x10E0 FFFF 32K L1P RAM/Cache
(1)
L1P RAM/Cache
(1)
L1P RAM/Cache
(1)
0x10E1 0000 0x10F0 3FFF 976K Reserved Reserved ReservedReserved0x10F0 4000 0x10F0 FFFF 48K L1D RAM L1D RAM L1D RAM
0x10F1 0000 0x10F1 7FFF 32K L1D RAM/Cache
(1)
L1D RAM/Cache
(1)
L1D RAM/Cache
(1)
0x10F1 8000 0x10FF FFFF 1M-96K Reserved Reserved Reserved
0x1100 0000 0x1FFF FFFF 240M Reserved Reserved Reserved
0x2000 0000 0x2000 7FFF 32K DDR2 Control Regs DDR2 Control Regs DDR2 Control Regs
0x2000 8000 0x2FFF FFFF 256M-32K Reserved Reserved Reserved
0x3000 0000 0x3FFF FFFF 256M PCI Data PCI Data
0x4000 0000 0x41FF FFFF 32M Reserved Reserved
0x4200 0000 0x42FF FFFF 16M EMIFA Data ( CS2)
(2)
EMIFA Data ( CS2)
(2)
0x4300 0000 0x43FF FFFF 16M Reserved Reserved
0x4400 0000 0x44FF FFFF 16M EMIFA Data ( CS3)
(2)
EMIFA Data ( CS3)
(2)
0x4500 0000 0x45FF FFFF 16M Reserved Reserved
0x4600 0000 0x46FF FFFF 16M EMIFA Data ( CS4)
(2)
EMIFA Data ( CS4)
(2)
0x4700 0000 0x47FF FFFF 16M Reserved Reserved
0x4800 0000 0x48FF FFFF 16M EMIFA Data ( CS5)
(2)
EMIFA Data ( CS5)
(2)
0x4900 0000 0x49FF FFFF 16M Reserved Reserved
0x4A00 0000 0x4BFF FFFF 32M Reserved Reserved
0x4C00 0000 0x4FFF FFFF 64M VLYNQ (Remote Data) VLYNQ (Remote Data)
0x5000 0000 0x7FFF FFFF 768M Reserved Reserved
0x8000 0000 0x8FFF FFFF 256M DDR2 Memory Controller DDR2 Memory Controller DDR2 Memory Controller DDR2 Memory Controller
0x9000 0000 0xFFFF FFFF 1792M Reserved Reserved Reserved Reserved
(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000 (i.e., all boot modes except the EMIFA ROM Direct Boot,BOOTMODE[3:0] = 0100, FASTBOOT = 0), the bootloader code disables all C64x+ cache (L2, L1P, and L1D) so that upon exit from thebootloader code, all C64x+ memories are configured as all RAM (L2CFG.L2MODE = 0h, L1PCFG.L1PMODE = 0h, andL1DCFG.L1DMODE = 0h). If cache use is required, the application code must explicitly enable the cache. For more information on bootmodes, see Section 3.4.1 ,Boot Modes. For more information on the bootloader, see the Using the TMS320DM643x BootloaderApplication Report (literature number SPRAAG0 ). For the EMIFA ROM Direct Boot (BOOTMODE[3:0] = 0100, FASTBOOT = 0), thebootloader is not executed—that is, L2 RAM/Cache defaults to all RAM (L2CFG.L2MODE = 0h); L1P RAM/Cache defaults to all cache(L1PCFG.L1PMODE = 7h); and L1D RAM/Cache defaults to all cache (L1DCFG.L1DMODE = 7h).(2) The EMIFA CS0 and CS1 are not functionally supported on the DM6437 device, and therefore, are not pinned out.
Device Overview14 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-4. Configuration Memory Map Summary
START END SIZE C64x+ADDRESS ADDRESS (Bytes)
0x0180 0000 0x0180 FFFF 64K C64x+ Interrupt Controller
0x0181 0000 0x0181 0FFF 4K C64x+ Powerdown Controller
0x0181 1000 0x0181 1FFF 4K C64x+ Security ID
0x0181 2000 0x0181 2FFF 4K C64x+ Revision ID
0x0182 0000 0x0182 FFFF 64K C64x+ EMC
0x0183 0000 0x0183 FFFF 64K Reserved
0x0184 0000 0x0184 FFFF 64K C64x+ Memory System
0x0185 0000 0x0187 FFFF 192K Reserved
0x0188 0000 0x01BB FFFF 3328K Reserved
0x01BC 0000 0x01BC 00FF 256 Reserved
0x01BC 0100 0x01BC 01FF 256 Pin Manager and Trace
0x01BC 0400 0x01BF FFFF 255K Reserved
0x01C0 0000 0x01C0 FFFF 64K EDMA CC
0x01C1 0000 0x01C1 03FF 1K EDMA TC0
0x01C1 0400 0x01C1 07FF 1K EDMA TC1
0x01C1 0800 0x01C1 0BFF 1K EDMA TC2
0x01C1 0C00 0x01C1 9FFF 5K Reserved
0x01C1 A000 0x01C1 A7FF 2K PCI Control Register
(1)
0x01C1 A800 0x01C1 FFFF 22K Reserved
0x01C2 0000 0x01C2 03FF 1K UART0
0x01C2 0400 0x01C2 07FF 1K UART1
0x01C2 0800 0x01C2 0FFF 2K Reserved
0x01C2 1000 0x01C2 13FF 1K I2C
0x01C2 1400 0x01C2 17FF 1K Timer0
0x01C2 1800 0x01C2 1BFF 1K Timer1
0x01C2 1C00 0x01C2 1FFF 1K Timer2 (Watchdog)
0x01C2 2000 0x01C2 23FF 1K PWM0
0x01C2 2400 0x01C2 27FF 1K PWM1
0x01C2 2800 0x01C2 2BFF 1K PWM2
0x01C2 2C00 0x01C2 2FFF 1K Reserved
0x01C2 3000 0x01C2 3FFF 4K HECC Control
(2)
0x01C2 4000 0x01C2 53FF 5K HECC RAM
0x01C2 5400 0x01C3 FFFF 107K Reserved
0x01C4 0000 0x01C4 07FF 2K System Module
0x01C4 0800 0x01C4 0BFF 1K PLL Controller 1
0x01C4 0C00 0x01C4 0FFF 1K PLL Controller 2
0x01C4 1000 0x01C4 1FFF 4K Power and Sleep Controller
0x01C4 2000 0x01C6 6FFF 148K Reserved
0x01C6 7000 0x01C6 77FF 2K GPIO
0x01C6 7800 0x01C6 7FFF 2K HPI
0x01C6 8000 0x01C6 FFFF 32K Reserved
0x01C7 0000 0x01C7 3FFF 16K VPSS Registers
0x01C7 4000 0x01C7 FFFF 48K Reserved
0x01C8 0000 0x01C8 0FFF 4K EMAC Control Registers
(1) Access to certain PCI registers when there is no active PCI clock may hang the device. For more information, see the TMS320DM643xPeripheral Component Interconnect (PCI) Reference Guide (literature number SPRU985).(2) Software must not access "Reserved" locations of the HECC. Access to HECC "Reserved" locations may hang the device.
Submit Documentation Feedback Device Overview 15
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-4. Configuration Memory Map Summary (continued)
START END SIZE C64x+ADDRESS ADDRESS (Bytes)
0x01C8 1000 0x01C8 1FFF 4K EMAC Control Module Registers
0x01C8 2000 0x01C8 3FFF 8K EMAC Control Module RAM
0x01C8 4000 0x01C8 47FF 2K MDIO Control Registers
0x01C8 4800 0x01CF FFFF 494K Reserved
0x01D0 0000 0x01D0 07FF 2K McBSP0
0x01D0 0800 0x01D0 0FFF 2K McBSP1
0x01D0 1000 0x01D0 13FF 1K McASP0 Control
0x01D0 1400 0x01D0 17FF 1K McASP0 Data
0x01D0 1800 0x01DF FFFF 1018K Reserved
0x01E0 0000 0x01E0 0FFF 4K EMIFA Control
0x01E0 1000 0x01E0 1FFF 4K VLYNQ Control Registers
0x01E0 2000 0x0FFF FFFF 226M-8K Reserved
Device Overview16 Submit Documentation Feedback
l TEXAS INSTRUMENTS
2.5 Pin Assignments
2.5.1 Pin Map (Bottom View)
W
V
U
T
R
P
N
M
L
K
10987654321
10987654321
DDR_D[3]
VSS
HECC_TX/
TOUT1L/
UTXD1/
GP[55]
VSS
UCTS0/
GP[87]
UTXD0/
GP[86]
URXD0/
GP[85]
SCL SDA
TCK RESETOUTEMU1 POR
DVDD33 TDOEMU0
TRST DVDDR2
TMS
DDR_D[1] DDR_DQM[0]
DDR_D[2]
PCIEN
TDI
RESET
RSV3
HECC_RX/
TINP1L/
URXD1/
GP[56]
RSV2
CVDD VSS
VSS
VSS CVDD
DVDDR2
DDR_A[11]DDR_A[12]DDR_CLKDDR_CLKDDR_D[14]
VSS
DVDD33
VSS
DDR_D[5]
DDR_D[6]
DDR_D[9]
VSS
VSS
DVDDR2
DDR_BA[2]
VSS
DDR_D[11] DDR_D[15] DDR_CKE
CVDD
VSS
CVDD
CVDD
VSS
DDR_DQM[1] DDR_CAS DDR_WE DDR_ZN
VSS VSS
DDR_DQS[1] DDR_RAS DDR_A[10]
CVDD CVDD
DVDDR2 DDR_D[4] DDR_D[8] DDR_D[13] DDR_BA[1]
DDR_D[12]
DVDDR2
CLKS1/
TINP0L/
GP[98] VSS
VSS
VSS
DVDDR2
CLKOUT0/
PWM2/
GP[84] DVDD33 VSS
DVDD33
DVDDR2 DVDDR2
VSS DVDDR2
DDR_CS
CVDD
DDR_DQS[0] DDR_D[10] DDR_BA[0]
DDR_D[0]
URTS0/
PWM0/
GP[88]
DDR_D[7] W
V
U
T
R
P
N
M
L
K
VSS
VSS
DDR_A[8]DDR_A[8]
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions inthe smallest possible package. Pin multiplexing is controlled using a combination of hardwareconfiguration at device reset and software programmable register settings. For more information on pinmuxing, see Section 3.7 ,Multiplexed Pin Configurations of this document.
Figure 2-2 through Figure 2-5 show the bottom view of the ZWT package pin assignments in fourquadrants (A, B, C, and D). Figure 2-6 through Figure 2-9 show the bottom view of the ZDU package pinassignments in four quadrants (A, B, C, and D).
Figure 2-2. ZWT Pin Map [Quadrant A]
Submit Documentation Feedback Device Overview 17
l TEXAS INSTRUMENTS V‘ U ,m, ,flr, T6 ‘7'”?{77 ‘9 ‘37
W
V
U
T
R
P
N
M
L
K
191817161514131211
191817161514131211
VSSA_1P1V
CVDD
VSS
VSS
CVDD VSS
CVDD
VSS VSS
VSS
DVDDR2
VSS RSV5DVDDR2
DDR_ZP DDR_VSSDLLDDR_VDDDLL
DVDDR2
CVDD
DVDDR2
VSS
VSS
VSS VSS
VSS
DAC_IOUT_C DAC_VREF
DAC_IOUT_B
DVDDR2
DVDDR2
DDR_D[27]DDR_D[21]DDR_D[18]
DAC_IOUT_A
RSV4
DVDDR2
VSS
DVDDR2
DDR_DQS[2] DDR_D[28]
MXVDD
DDR_D[17] DDR_D[22] DDR_D[24] VSS
VSS
VDDA_1P8V
DAC_IOUT_D
VSS
DAC_RBIAS
DDR_VREF DDR_DQM[3] DDR_D[23] DDR_D[31]
DVDD33 MXI/
CLKIN
DDR_D[20] DDR_DQS[3] DDR_D[30]
VSS VSS
DDR_D[19] DDR_D[29]
DDR_D[16]
VSS
CVDD DVDD33
VSS
PLLPWR18
VSS
VSS DVDD33
VDDA_1P1V
VSS VSSA_1P8V
VSS
DDR_D[26]
MXVSS
DDR_DQM[2]
DDR_D[25]
CVDD
W
V
U
T
R
P
N
M
L
K
DDR_A[0]
DDR_A[1]
DDR_A[2]
DDR_A[5]
DDR_A[3]
DDR_A[4]
DDR_A[6]
DDR_A[9]
DDR_A[7]
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 2-3. ZWT Pin Map [Quadrant B]
18 Device Overview Submit Documentation Feedback
I TEXAS INSTRUMENTS “ ‘2 u: w m
H
G
F
E
D
C
B
A
191817161514131211
191817161514131211
CVDD
EM_WAIT/
(RDY/BSY)
VD/
GP[53]
YI7(CCD7)/
GP[43]
CI5(CCD13)/
EM_A[15]/
AD29/
EM_D[2]/
GP[49]
CI4(CCD12)/
EM_A[16]/
PGNT/
EM_D[3]/
GP[48]
CI0(CCD8)/
EM_A[20]/
PINTA/
EM_D[7]/
GP[44]
C_FIELD/
EM_A[21]/
GP[34]
CI2(CCD10)/
EM_A[18]/
PRST/
EM_D[5]/
GP[46]
C_WE/
EM_R/W/
GP[35]
AD30AD28
DVDD33 DVDD33
VSS
VSS VSS
DVDD33
VSS
YI5(CCD5)/
GP[41]
YI3(CCD3)/
GP[39]
YI6(CCD6)/
GP[42]
PCLK/
GP[54]
LCD_OE/
EM_CS3/
GP[13]
G0/
EM_CS2/
GP[12]
YOUT0/
GP[22]/
(BOOTMODE0)
COUT1/
EM_D[1]/
GP[15]
VCLK/
GP[31]
COUT4/
EM_D[4]/
GP[18]
VSYNC/
EM_CS4/
GP[32]
YI1(CCD1)/
GP[37]
COUT6/
EM_D[6]/
GP[20]
VSS
YI4(CCD4)/
GP[40]
VSS
DVDD33
DVDD33
B0/
LCD_FIELD/
EM_A[3]/
GP[11]
G1/
EM_A[1]/
(ALE)/GP[9]/
(AEAW1/
PLLMS1)
COUT5/
EM_D[5]/
GP[19]
COUT2/
EM_D[2]/
GP[16]
B2/
EM_BA[1]/
GP[5]/
(AEM0)
COUT0/
EM_D[0]/
GP[14]
YOUT2/
GP[24]/
(BOOTMODE2)
YOUT3/
GP[25]/
(BOOTMODE3)
YOUT4/
GP[26]/
(FASTBOOT)
VPBECLK/
GP[30]
R0/
EM_A[4]/
GP[10]/
(AEAW2/
PLLMS2)
VSS
YOUT7/
GP[29] YOUT6/
GP[28] VSS
R1/
EM_A[0]/
GP[7]/
(AEM2)
VSS
CI3(CCD11)/
EM_A[17]/
AD31/
EM_D[4]/
GP[47]
HD/
GP[52]
R2/
EM_BA[0]/
GP[6]/
(AEM1)
B1/
EM_A[2]/
(CLE)/GP[8]/
(AEAW0/
PLLMS0)
COUT7/
EM_D[7]/
GP[21]
YI2(CCD2)/
GP[38] YI0(CCD0)/
GP[36]
EM_OE
EM_WE COUT3/
EM_D[3]/
GP[17]
YOUT1/
GP[23]/
(BOOTMODE1)
VSS
DVDD33
CVDD VSS YOUT5/
GP[27]
CI1(CCD9)/
EM_A[19]/
PREQ/
EM_D[6]/
GP[45]
H
G
F
E
D
C
B
A
JVSS CVDD VSS
VSS DVDD33 MXO
VSS DVDD33 VSS J
HSYNC/
EM_CS5/
GP[33]
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 2-4. ZWT Pin Map [Quadrant C]
Submit Documentation Feedback Device Overview 19
l TEXAS INSTRUMENTS , 7774* ""57 7/7 5 7 a 9 ‘0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 5 s 7 a 9 m
J
H
G
F
E
D
C
B
A
10987654321
10987654321
AXR0[0]/
FSR1/
GP[105]
DVDD33
HD15/
MTXCLK/
AD12/
GP[73]
DVDD33
VSS
HR/W/
MRXCLK/
AD8/
GP[77]
HDS1/
MRXD1/
AD7/
GP[79]
HINT/
MRXD3/
AD6/
GP[82]
HDS2/
MRXD0/
AD9/
GP[78]
HAS/
MDIO/
AD3/
GP[83]
HCNTL1/
MTXEN/
AD11/
GP[75]
HRDY/
MRXD2/
PCBE0/
GP[80]
HD14/
MTXD0/
AD15/
GP[72]
AD0/
GP[0] AD2/
GP[2]
AD1/
GP[1]
AMUTEIN0/
FSX1/
GP[109]
VSS
GP[4]/
PWM1
AFSX0/
DX1/
GP[107]
AXR0[3]/
FSR0/
GP[102]
ACLKR0/
CLKX0/
GP[99]
AMUTE0/
DR1/
GP[110]
AD4/
GP[3]
HHWIL/
MRXDV/
AD13/
GP[74]
HD10/
MCRS/
PSERR/
GP[68]
HD13/
MTXD1/
AD14/
GP[71]
HD8/
VLYNQ_TXD3/
PPERR/
GP[66]
EM_A[7]/
AD22/
GP[94]
EM_A[11]/
AD24/
GP[90]
EM_A[9]/
PIDSEL/
GP[92]
EM_A[12]/
PCBE3/
GP[89]
VSS AD26
HD7/
VLYNQ_TXD2/
PDEVSEL/
GP[65]
DVDD33
AXR0[2]/
FSX0/
GP[103]
AXR0[1]/
DX0/
GP[104]
HD12/
MTXD2/
PPAR/
GP[70]
DVDD33
VSS
CVDD
EM_A[8]/
AD21/
GP[93]
VSS VSS CVDD CVDD
VLYNQ_
CLOCK/
PCICLK/
GP[57]
DVDD33
EM_A[6]/
AD20/
GP[95]
HD4/
VLYNQ_RXD3/
PFRAME/
GP[62]
HD1/
VLYNQ_RXD0/
AD16/
GP[59]
DVDD33 VSS DVDD33 DVDD33
HD2/
VLYNQ_RXD1/
AD17/
GP[60]
CI6(CCD14)/
EM_A[14]/
AD27/
EM_D[1]/
GP[50]
VSS CVDD VSS
EM_A[5]/
AD19/
GP[96]
CI7(CCD15)/
EM_A[13]/
AD25/
EM_D[0]/
GP[51]
DVDD33
AHCLKR0/
CLKR0/
GP[101]
CLKS0/
TOUT0L/
GP[97] DVDD33 VSS
VSS
DVDD33
HD5/
VLYNQ_TXD0/
PIRDY/
GP[63]
HD0/
VLYNQ_
SCRUN/
AD18/
GP[58]
HD3/
VLYNQ_RXD2/
PCBE2/
GP[61]
VSS
HCS/
MDCLK/
AD5/
GP[81]
HD11/
MTXD3/
PCBE1/
GP[69]
HD9/
MCOL/
PSTOP/
GP[67]
HD6/
VLYNQ_TXD1/
PTRDY/
GP[64]
RSV1 VSS
ACLKX0/
CLKX1/
GP[106] VSS
VSS
AFSR0/
DR0/
GP[100]
DVDD33 VSS
AHCLKX0/
CLKR1/
GP[108]
HCNTL0/
MRXER/
AD10/
GP[76]
J
H
G
F
E
D
C
B
A
DVDD33
EM_A[10]/
AD23/
GP[91]
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 2-5. ZWT Pin Map [Quadrant D]
20 Device Overview Submit Documentation Feedback
l TEXAS INSTRUMENTS
M
N
P
R
T
U
V
11109
43
11109876543
M
N
V
WW
Y Y
21
21
AA AA
AB AB
M
N
P
R
T
U
P
11
5
109
8
76
CLKOUT0/
PWM2/
GP[84] RESET
RESETOUT
POR
TMS
TDO TDITCK
TRST
EMU1EMU0
PCIEN
DVDD33
DVDD33
DVDD33
DVDD33
DVDDR2
DVDDR2 DVDDR2 DVDDR2 DVDDR2 DVDDR2
DVDDR2 DVDDR2 DVDDR2
DVDDR2
URTS0/
PWM0/
GP[88]
HECC_RX/
TINP1L/
URXD1/
GP[56]
HECC_TX/
TOUT1L/
UTXD1/
GP[55]
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
CVDD VSS
VSS
VSS
VSS
VSS RSV3
UCTS0/
GP[87]
UTXD0/
GP[86]
URXD0/
GP[85]
SDA
SCL
DDR_D[0] DDR_D[1]
DDR_D[2]
DDR_D[3] DDR_D[4]
DDR_D[5]
DDR_D[6]
DDR_D[7]
DDR_D[8]
DDR_D[9]
DDR_D[10]
DDR_D[11]
DDR_D[12]
DDR_D[13]
DDR_D[14]
DDR_D[15]
DDR_A[11]
DDR_A[10]
DDR_A[12]
DDR_BS[2]DDR_BS[1]
DDR_BS[0]
DDR_DQS[1]DDR_DQS[0]
DDR_CAS
DDR_RAS
DDR_DQM[0] DDR_DQM[1] DDR_CSDDR_WE
DDR_CKE
DDR_CLK0DDR_CLK0
CVDD CVDD
VSS
CVDD
VSS VSS
CVDD
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 2-6. ZDU Pin Map [Quadrant A]
Submit Documentation Feedback Device Overview 21
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 2-7. ZDU Pin Map [Quadrant B]
22 Device Overview Submit Documentation Feedback
TEXAS INSTRUMENTS ‘z ‘2 a m w m 2n 2‘ 22
L
K
J
H
G
F
E
12 13 14 19 20
12 13 14 15 16 17 18 19 20
L
K
E
D
VSS
R2/
EM_BA[0]/
GP[6]/
(AEM1)
DVDD33
DVDD33
AD30AD28 EM_OEVSS
AD26
D
C
C_WE/
EM_R/W/
GP[35]
B2/
EM_BA[1]/
GP[5[/
(AEM0)
C_FIELD/
EM_A[21]/
GP[34]
CI1(CCD9)/
EM_A[19]/
PREQ/
EM_D[6]/
GP[45]
CI5(CCD13)/
EM_A[15]/
AD29/
EM_D[2]/
GP[49]
EM_WE
CI0(CCD8)/
EM_A[20]/
PINTA/
EM_D[7]/
GP[44]
EM_A[11]/
AD24/
GP[90]
C
21 22
21 22
COUT2/
EM_D[2]/
GP[16]
COUT5/
EM_D[5]/
GP[19]
COUT6/
EM_D[6]/
GP[20]
COUT4/
EM_D[4]/
GP[18]
VSYNC/
EM_CS4/
GP[32]
HSYNC/
EM_CS5/
GP[33]
YOUT7/
GP[29]
DVDD33
COUT0/
EM_D[0]/
GP[14]
VCLK/
GP[31]
VPBECLK/
GP[30]
VSS
LCD_OE/
EM_CS3/
GP[13]
B0/
LCD_FIELD/
EM_A[3]/
GP[11]
G0/
EM_CS2/
GP[12]
B
YI2(CCD2)
GP[38]
YI4(CCD4)/
GP[40]
YI1(CCD1)/
GP[37]
CI3(CCD11)/
EM_A[17]/
AD31/
EM_D[4]/
GP[47]
CI4(CCD12)/
EM_A[16]/
PGNT/
EM_D[3]/
GP[48]
YI0(CCD0)/
GP[36]
YI6(CCD6)/
GP[42]
EM_A[12]/
PCBE3/
GP[89]
B
A
YI7(CCD7)/
GP[43] PCLK/
GP[54]
YI3(CCD3)/
GP[39]
CI2(CCD10)/
EM_A[18]/
PRST/
EM_D[5]/
GP[46]
CI6(CCD14)/
EM_A[14]/
AD27/
EM_D[1]/
GP[50]
HD/
GP[52]
VD/
GP[53]
CI7(CCD15)/
EM_A[13]/
AD25/
EM_D[0]/
GP[51]
A
VSS
VSS
DVDD33
13 14 15 16 17
L
K
J
H
G
F
J
12
18
YOUT5/
GP[27]
YOUT3/
GP[25]/
(BOOTMODE3)
YOUT2/
GP[24]/
(BOOTMODE2)
YOUT1/
GP[23]/
(BOOTMODE1)
YOUT6/
GP[28]
YOUT4/
GP[26]/
(FASTBOOT)
R0/
EM_A[4]/
GP[10]/
(AEAW2/
PLLMS2)
G1/
EM_A[1]/
(ALE)/GP[9]/
(AEAW1/
PLLMS1)
B1/
EM_A[2]/
(CLE)/GP[8]/
(AEAW0/
PLLMS0)
R1/
EM_A[0]/
GP[7]/
(AEM2)
EM_WAIT/
(RDY/BSY)
YOUT0/
GP[22]/
(BOOTMODE0)
DVDD33
DVDD33
DVDD33
VSS
VSS
VSS
VSS
DVDD33
VSS
VSS
DVDD33 DVDD33
VSS
DVDD33
DVDD33
DVDD33
CVDD CVDD
CVDD
VSS
CVDD
CVDD
VSS
VSS
VSS
VSS
VSS
COUT7/
EM_D[7]/
GP[21]
COUT3/
EM_D[3]/
GP[17]
COUT1/
EM_D[1]/
GP[15]
YI5(CCD5)/
GP[41]
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 2-8. ZDU Pin Map [Quadrant C]
Submit Documentation Feedback Device Overview 23
l TEXAS INSTRUMENTS 37 V r w “ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 7 ‘ 3 5 m “
L
K
J
H
G
F
E
1110943
1110987
6
543
L
K
E
DDVDD33
HHWIL/
MRXDV/
AD13/
GP[74]
VSS DVDD33
RSV1 DVDD33 VSS D
C
HD9/
MCOL/
PSTOP/
GP[67]
HRDY/
MRXD2/
PCBE0/
GP[80]
HD12/
MTXD2/
PPAR/
GP[70]
HD6/
VLYNQ_TXD1/
PTRDY/
GP[64]
HD1/
VLYNQ_RXD0/
AD16/
GP[59]
EM_A[7]/
AD22/
GP[94]
HCNTL1/
MTXEN/
AD11/
GP[75]
HD4/
VLYNQ_RXD3/
PFRAME/
GP[62]
EM_A[9]/
PIDSEL/
GP[92]
C
21
21
AD0/
GP[0]
AD2/
GP[2] AD4/
GP[3]
AFSX0/
DX1/
GP[107]
AHCLKX0/
CLKR1/
GP[108]
AXR0[0]/
FSR1/
GP[105]
ACLKR0/
CLKX0/
GP[99]
AXR0[2]/
FSX0/
GP[103]
AXR0[1]/
DX0/
GP[104]
CLKS1/
TINP0L/
GP[98]
AD1/
GP[1]
ACLKX0/
CLKX1/
GP[106]
AHCLKR0/
CLKR0/
GP[101]
DVDD33
HAS/
MDIO/
AD3/
GP[83]
HINT/
MRXD3/
AD6/
GP[82]
HCS/
MDCLK/
AD5/
GP[81]
HDS2/
MRXD0/
AD9/
GP[78]
B
HD10/
MCRS/
PSERR/
GP[68]
HDS1/
MRXD1/
AD7/
GP[79]
HD14/
MTXD0/
AD15/
GP[72]
HD7/
VLYNQ_TXD2/
PDEVSEL/
GP[65]
HD0/
VLYNQ_
SCRUN/
AD18/
GP[58]
EM_A[6]/
AD20/
GP[95]
HD13/
MTXD1/
AD14/
GP[71]
HD3/
VLYNQ_RXD2/
PCBE2/
GP[61]
EM_A[10]/
AD23/
GP[91]
B
A
HD8/
VLYNQ_TXD3/
PPERR/
GP[66]
HR/W/
MRXCLK/
AD8/
GP[77]
HD11/
MTXD3/
PCBE1/
GP[69]
HD5/
VLYNQ_TXD0/PI
RDY/
GP[63]
HD2/
VLYNQ_RXD1/
AD17/
GP[60]
EM_A[5]/
AD19/
GP[96]
HD15/
MTXCLK/
AD12/
GP[73]
VLYNQ_
CLOCK/
PCICLK/
GP[57]
EM_A[8]/
AD21/
GP[93]
A
DVDD33
HCNTL0/
MRXER/
AD10/
GP[76]
VSS DVDD33
11109876
L
K
J
H
G
F
J
5
DVDD33
DVDD33
DVDD33
DVDD33
VSS
DVDD33 DVDD33 DVDD33 DVDD33
DVDD33
DVDD33
DVDD33
GP[4]/
PWM1
CLKS0/
TOUT0L/
GP[97]
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
RSV2
AMUTE0/
DR1/
GP[110]
AMUTEIN0/
FSX1/
GP[109]
AFSR0/
DR0/
GP[100]
AXR0[3]/
FSR0/
GP[102]
CVDD
CVDD
CVDD
CVDD
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 2-9. ZDU Pin Map [Quadrant D]
Device Overview24 Submit Documentation Feedback
l TEXAS INSTRUMENTS
2.6 Terminal Functions
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The terminal functions tables (Table 2-5 through Table 2-32 ) identify the external signal names, theassociated pin (ball) numbers along with the mechanical package designator, the pin type, whether the pinhas any internal pullup or pulldown resistors, and a functional pin description. For more detailedinformation on device configuration, peripheral selection, multiplexed/shared pin, and debuggingconsiderations, see the Device Configurations section of this data manual.
All device boot and configuration pins (except PCIEN) are multiplexed configuration pins— meaning theyare multiplexed with functional pins. These pins function as device boot and configuration pins only duringdevice reset. The input states of these pins are sampled and latched into the BOOTCFG register whendevice reset is deasserted (see Note below). After device reset is deasserted, the values on thesemultiplexed pins no longer have to hold the configuration.
The PCIEN pin is a standalone configuration pin. Its value is latched into the BOOTCFG register whendevice reset is deasserted (see Note below). Unlike the multiplexed device boot and configuration pins,the value on the PCIEN pin even after device reset is deasserted must hold the configuration.
For proper device operation, external pullup/pulldown resistors may be required on these device boot andconfiguration pins. Section 3.9.1 ,Pullup/Pulldown Resistors discusses situations where externalpullup/pulldown resistors are required.
Note: Internal to the chip, the two device reset pins RESET and POR are logically AND’d together for thepurpose of latching device boot and configuration pins. The values on all device boot and configurationpins are latched into the BOOTCFG register when the logical AND of RESET and POR transitions fromlow-to-high.
Submit Documentation Feedback Device Overview 25
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-5. BOOT Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
BOOT
YOUT3/GP[25]/
(BOOTMODE3)
G16 H21 Bootmode configuration bits. These bootmode functions along withYOUT2/GP[24]/
the FASTBOOT function determine what device bootmode(BOOTMODE2) G15 L20
IPD configuration is selected.I/O/Z
DV
DD33
The DM6437 device supports several types of bootmodes along withYOUT1/GP[23]/ F15 K20
a FASTBOOT option; for more details on the types/options, see(BOOTMODE1)
F18 J20 Section 3.4.1 ,Boot Modes.YOUT0/GP[22]/
(BOOTMODE0)
Fast BootYOUT4/GP26]/ IPDG17 K19 I/O/Z 0 = Not Fast Boot(FASTBOOT) DV
DD33
1 = Fast Boot
R0/EM_A[4]/ EMIFA Address Bus Width (AEAW) and Fast Boot PLL MultiplierIPDGP[10]/ A17 B21 I/O/Z Select (PLLMS).DV
DD33(AEAW2/PLLMS2) These configuration pins serve two purposes which are based onAEM[2:0] settings.G1/EM_A[1]/
IPD
For AEM[2:0] = 001 [8-bit EMIFA (Async) Pinout Mode 1], the(ALE)/GP[9]/ A16 B20 I/O/Z
DV
DD33
AEAW/PLLMS pins serve as the AEAW function to select EMIFA(AEAW1/PLLMS1)
Address Bus Width.For all other AEM modes, the AEAW/PLLMS pins select the PLLB1/EM_A[2]/
IPD
multiplier for fast boot.(CLE)/GP[8]/ B16 A20 I/O/Z
DV
DD33
For more details, see Section 3.5.1.2 ,EMIFA Address Width Select(AEAW0/PLLMS0)
(AEAW) and Fast Boot PLL Multipler Select (PLLMS).
R1/EM_A[0]/ IPD Selects EMIFA Pinout ModeB17 C21 I/O/ZGP[7]/(AEM2) DV
DD33
The DM6437 supports the following EMIFA Pinout Modes:R2/EM_BA[0]/ IPDC17 E20 I/O/Z
AEM[2:0] = 000, No EMIFAGP[6]/(AEM1) DV
DD33
AEM[2:0] = 001, 8-bit EMIFA (Async) Pinout Mode 1AEM[2:0] = 011, 8-bit EMIFA (Async) Pinout Mode 3AEM[2:0] = 100, 8-bit EMIFA (NAND) Pinout Mode 4B2/EM_BA[1]/ IPD
AEM[2:0] = 101, 8-bit EMIFA (NAND) Pinout Mode 5C16 C20 I/O/ZGP[5]/(AEM0) DV
DD33
This signal doesn't actually affect the EMIFA module. It only affectshow the EMIFA is pinned out.
For proper DM6437 device operation, if this pin is both routed and3-stated (not driven) during device reset, it must be pulled down viaYOUT6/ IPDH16 J21 I/O/Z an external resistor. For more detailed information onGP[28] DV
DD33
pullup/pulldown resistors, see Section 3.9.1 ,Pullup/PulldownResistors.
PCI EnableIPDPCIEN T3 W3 I 0 = PCI pin function is disabled [default]DV
DD33
1 = PCI pin function is enabled
For proper DM6437 device operation, if this pin is both routed andIPU 3-stated (not driven) during device reset, it must be pulled up via anYOUT5/GP[27] H17 L19 I/O/Z
DV
DD33
external resistor. For more detailed information on pullup/pulldownresistors, see Section 3.9.1 ,Pullup/Pulldown Resistors.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview26 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-6. Oscillator/PLL Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2)
DESCRIPTIONZWT ZDUNAME
NO. NO.
OSCILLATOR, PLL
Crystal input MXI for MX oscillator (system oscillator, typically 27 MHz).MXI/
K19 N22 I MXV
DD
If the internal oscillator is bypassed, this is the external oscillator clockCLKIN
input.
(3)
MXO J19 M22 O MXV
DD
Crystal output for MX oscillator
1.8 V power supply for MX oscillator. On the board, this pin can beMXV
DD
L18 N21 S
(4)
connected to the same 1.8 V power supply as DV
DDR2
.
MXV
SS
K18 M21 GND
(4)
Ground for MX oscillator
PLL
PWR18
L16 N20 S
(4)
1.8 V power supply for PLLs
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) Specifies the operating I/O supply voltage for each signal(3) For more information on external board connections, see Section 6.6 ,External Clock Input From MXI/CLKIN Pin.(4) For more information, see the Recommended Operating Conditions table
Table 2-7. Clock Generator Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
CLOCK GENERATOR
This pin is multiplexed between the System Clock generator (PLL1), PWM2,and GPIO.CLKOUT0/ IPDM1 R1 I/O/Z For the System Clock generator (PLL1), it is clock output CLKOUT0. This isPWM2/GP[84] DV
DD33
configurable for 27 MHz or other 27 MHz-divided-down (/1 to /32) clockoutputs.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 27
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-8. RESET and JTAG Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
RESET
IPURESET M4 R3 I Device resetDV
DD33
Reset output status pin. The RESETOUT pin indicates when theRESETOUT N3 T3 O/Z
DV
DD33
device is in reset.
IPUPOR N4 R2 I Power-on reset.DV
DD33
JTAG
IPU JTAG test-port mode select input.TMS R3 V3 I
DV
DD33
For proper device operation, do not oppose the IPU on this pin.
TDO P3 U2 O/Z JTAG test-port data outputDV
DD33
IPUTDI P4 U3 I JTAG test-port data inputDV
DD33
IPUTCK N1 U1 I JTAG test-port clock inputDV
DD33
JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, seeIPDTRST R2 V2 I the IEEE 1149.1 JTAG compatibility statement portion of this dataDV
DD33
sheet
IPUEMU1 N2 T2 I/O/Z Emulation pin 1DV
DD33
IPUEMU0 P2 T1 I/O/Z Emulation pin 0DV
DD33
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview28 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-9. EMIFA Terminal Functions (Boot Configuration)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
EMIFA: BOOT CONFIGURATION
R0/EM_A[4]/ These pins are multiplexed between the VPBE (VENC), EMIFA, andIPDGP[10]/ A17 B21 I/O/Z GPIO. When RESET or POR is asserted, these pins function asDV
DD33(AEAW2/PLLMS2) EMIFA configuration pins. At reset if AEM[2:0] = 001 (EMIFA in 8-bitAsync mode), then the input states of AEAW[2:0] are sampled to setG1/EM_A[1]/
IPD
the EMIFA Address Bus Width. After reset, these pins function as(ALE)/GP[9]/ A16 B20 I/O/Z
DV
DD33
VPBE (VENC), EMIFA, or GPIO pin functions based on pin mux(AEAW1/PLLMS1)
selection.B1/EM_A[2]/
For more details on the AEAW/PLLMS functions, see Section 3.5.1.2 ,(CLE)/GP[8]/ B16 A20 I/O/Z DV
DD33
EMIFA Address Bus Width (AEAW) and Fast Boot PLL Multiplier(AEAW0/PLLMS0)
Select (PLLMS).
B2/EM_BA[1]/ IPD These pins are multiplexed between the VPBE (VENC), EMIFA, andC16 C20 I/O/ZGP[5]/(AEM0) DV
DD33
GPIO. When RESET or POR is asserted, these pins function asEMIFA configuration pins. At reset, the input states of AEM[2:0] areR2/EM_BA[0]/ IPDC17 E20 I/O/Z
sampled to set the EMIFA Pinout Mode.GP[6]/(AEM1) DV
DD33
For more details, see Section 3.5.1 ,Configurations at Reset. Afterreset, these pins function as VPBE (VENC), EMIFA, or GPIO pinR1/ EM_A[0]/ IPD
functions based on pin mux selection.B17 C21 I/O/ZGP[7]/(AEM2) DV
DD33
For more details on the AEM functions, see Section 3.5.1.1 ,EMIFAPinout Mode (AEM[2:0]).
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 29
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-10. EMIFA Terminal Functions (EMIFA Pinout Mode 1, AEM[2:0] = 001)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
EMIFA FUNCTIONAL PINS: 8-Bit ASYNC/NOR (EMIFA Pinout Mode 1, AEM[2:0] = 001)
Actual pin functions are determined by the PINMUX0 and PINMUX1 register bit settings (e.g., PCIEN, AEAW[2:0], AEM[2:0], etc.). Formore details, see Section 3.7 ,Multiplexed Pin Configurations.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
For EMIFA, this pin is Chip Select 2 output EM_CS2 for use withasynchronous memories (i.e., NOR flash).G0/ EM_CS2/ IPD This is the chip select for the default boot and ROM boot modes.C19 C22 I/O/ZGP[12] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
For EMIFA, this pin is Chip Select 3 output EM_CS3 for use withasynchronous memories (i.e., NOR flash).LCD_OE/ EM_CS3/ IPDC18 D22 I/O/ZGP[13] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
For EMIFA, it is Chip Select 4 output EM_CS4 for use withasynchronous memories (i.e., NOR flash).VSYNC/ EM_CS4/ IPDE19 H22 I/O/ZGP[32] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
For EMIFA, it is Chip Select 5 output EM_CS5 for use withasynchronous memories (i.e., NOR flash).HSYNC/ EM_CS5/ IPDF19 J22 I/O/ZGP[33] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.C_WE/EM_R/ W/ IPDD13 C17 I/O/ZGP[35] DV
DD33
For EMIFA, it is read/write output EM_R/ W.
EM_WAIT/ IPU For EMIFA (ASYNC/NOR), this pin is wait state extension inputE15 D20 I/O/Z(RDY/ BSY) DV
DD33
EM_WAIT.
IPUEM_OE D15 D19 I/O/Z For EMIFA, it is output enable output EM_OE.DV
DD33
IPUEM_WE E14 C19 I/O/Z For EMIFA, it is write enable output EM_WE.DV
DD33
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
R2/EM_BA[0]/ IPD
For EMIFA, this is the Bank Address 0 output (EM_BA[0]). WhenC17 E20 I/O/ZGP[6]/(AEM1) DV
DD33
connected to an 8-bit asynchronous memory, this pin is the lowestorder bit of the byte address.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
B2/EM_BA[1]/ IPD
For EMIFA, this is the Bank Address 1 output EM_BA[1]. WhenC16 C20 I/O/ZGP[5]/(AEM0) DV
DD33
connected to an 8-bit asynchronous memory, this pin is the 2nd bit ofthe address.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview30 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-10. EMIFA Terminal Functions (EMIFA Pinout Mode 1, AEM[2:0] = 001) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.C_FIELD/ IPDD12 C16 I/O/ZEM_A[21]/GP[34] DV
DD33
For EMIFA, it is address bit 21 output EM_A[21].
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andCI0(CCD8)/
GPIO.EM_A[20]/ IPDC12 C15 I/O/ZPINTA/ DV
DD33
For EMIFA (AEM[2:0] = 001), this pin is address bit 20 outputEM_D[7]/GP[44]
EM_A[20] if AEAW[2:0] = 100b.
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andCI1(CCD9)/
GPIO.EM_A[19]/ IPDB12 C14 I/O/ZPREQ/ DV
DD33
For EMIFA (AEM[2:0] = 001), this pin is address bit 19 outputEM_D[6]/GP[45]
EM_A[19] if AEAW[2:0] = 100b.
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andCI2(CCD10)/
GPIO.EM_A[18]/ IPDD11 A14 I/O/ZPRST/ DV
DD33
For EMIFA (AEM[2:0] = 001), this pin is address bit 18 outputEM_D[5]/GP[46]
EM_A[18] if AEAW[2:0] = 011/100b.
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andCI3(CCD11)/
GPIO.EM_A[17]/ IPDA11 B14 I/O/ZAD31/ DV
DD33
For EMIFA (AEM[2:0] = 001), this pin is address bit 17 outputEM_D[4]/GP[47]
EM_A[17] if AEAW[2:0] = 011/100b.
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andCI4(CCD12)/
GPIO.EM_A[16]/ IPDC11 B13 I/O/ZPGNT/ DV
DD33
For EMIFA (AEM[2:0] = 001), this pin is address bit 16 outputEM_D[3]/GP[48]
EM_A[16] if AEAW[2:0] = 010/011/100b.
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andCI5(CCD13)/
GPIO.EM_A[15]/ IPDB11 C13 I/O/ZAD29/ DV
DD33
For EMIFA (AEM[2:0] = 001), this pin is address bit 15 outputEM_D[2]/GP[49]
EM_A[15] if AEAW[2:0] = 010/011/100b.
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andCI6(CCD14)/
GPIO.EM_A[14]/ IPDA10 A13 I/O/ZAD27/ DV
DD33
For EMIFA (AEM[2:0] = 001), this pin is address bit 14 outputEM_D[1]/GP[50]
EM_A[14] if AEAW[2:0] = 001/010/011/100b.
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andCI7(CCD15)/
GPIO.EM_A[13]/ IPDB10 A12 I/O/ZAD25/ DV
DD33
For EMIFA (AEM[2:0] = 001), this pin is address bit 13 outputEM_D[0]/GP[51]
EM_A[13] if AEAW[2:0] = 001/010/011/100b.
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[12]/ PCBE3/ IPDD10 B12 I/O/ZGP[89] DV
DD33
For EMIFA, this pin is address bit 12 output EM_A[12].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[11]/AD24/ IPDC10 C12 I/O/ZGP[90] DV
DD33
For EMIFA, this pin is address bit 11 output EM_A[11].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[10]/AD23/ IPDA9 B11 I/O/ZGP[91] DV
DD33
For EMIFA, this pin is address bit 10 output EM_A[10].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[9]/PIDSEL/ IPDD9 C11 I/O/ZGP[92] DV
DD33
For EMIFA, this pin is address bit 9 output EM_A[9].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[8]/AD21/ IPDB9 A11 I/O/ZGP[93] DV
DD33
For EMIFA, this pin is address bit 8 output EM_A[8].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[7]/AD22/ IPDC9 C10 I/O/ZGP[94] DV
DD33
For EMIFA, this pin is address bit 7 output EM_A[7].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[6]/AD20/ IPDD8 B10 I/O/ZGP[95] DV
DD33
For EMIFA, this pin is address bit 6 output EM_A[6].
Submit Documentation Feedback Device Overview 31
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-10. EMIFA Terminal Functions (EMIFA Pinout Mode 1, AEM[2:0] = 001) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[5]/AD19/ IPDB8 A10 I/O/ZGP[96] DV
DD33
For EMIFA, this pin is address bit 5 output EM_A[5].
R0/EM_A[4]/
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.IPDGP[10]/ A17 B21 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 4 output EM_A[4].(AEAW2/PLLMS2)
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.B0/LCD_FIELD/ IPDB18 D21 I/O/ZEM_A[3]/GP[11] DV
DD33
For EMIFA, this pin is address bit 3 output EM_A[3].
B1/EM_A[2]/
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.IPD(CLE)/GP[8]/ B16 A20 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 2 output EM_A[2].(AEAW0/PLLMS0)
G1/EM_A[1]/
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.IPD(ALE)/GP[9]/ A16 B20 I/O/Z
DV
DD33
When used for EMIFA, this pin is address output EM_A[1].(AEAW1/PLLMS1)
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
For EMIFA, this pin is Address output EM_A[0], which is the leastR1/ EM_A[0]/ IPDB17 C21 I/O/Z
significant bit on a 32-bit word address.GP[7]/(AEM2) DV
DD33
For an 8-bit asynchronous memory, this pin is the 3rd bit of theaddress.
COUT0/EM_D0/ IPDD16 E21 I/O/ZGP[14] DV
DD33
COUT1/EM_D1/ IPDD18 G20 I/O/ZGP[15] DV
DD33
COUT2/EM_D2/ IPDD17 E22 I/O/ZGP[16] DV
DD33
These pins are multiplexed between VPBE (VENC), EMIFA, andCOUT3/EM_D3/ IPDE16 F20 I/O/Z
GPIO.GP[17] DV
DD33
COUT4/EM_D4/ IPD
For EMIFA (AEM[2:0] = 001), these pins are the 8-bit bi-directionalE18 G21 I/O/ZGP[18] DV
DD33
data bus (EM_D[7:0]).
COUT5/EM_D5/ IPDE17 F22 I/O/ZGP[19] DV
DD33
COUT6/EM_D6/ IPDF16 F21 I/O/ZGP[20] DV
DD33
COUT7/EM_D7/ IPDF17 H20 I/O/ZGP[21] DV
DD33
EMIFA FUNCTIONAL PINS: 8-Bit NAND (EMIFA Pinout Mode 1, AEM[2:0] = 001)
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andG1/EM_A[1]/
GPIO.IPD(ALE)/GP[9]/ A16 B20 I/O/Z
DV
DD33
When used for EMIFA (NAND) , this pin is the Address Latch Enable(AEAW1/PLLMS1)
output (ALE).
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andB1/EM_A[2]/
GPIO.IPD(CLE)/GP[8]/ B16 A20 I/O/Z
DV
DD33
When used for EMIFA (NAND), this pin is the Command Latch Enable(AEAW0/PLLMS0)
output (CLE).
EM_WAIT/ IPU When used for EMIFA (NAND), this pin is ready/busy inputE15 D20 I/O/Z(RDY/ BSY) DV
DD33
(RDY/ BSY).
IPUEM_OE D15 D19 I/O/Z When used for EMIFA (NAND), this pin is read enable output ( RE).DV
DD33
IPUEM_WE E14 C19 I/O/Z When used for EMIFA (NAND), this pin is write enable output ( WE).DV
DD33
Device Overview32 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-10. EMIFA Terminal Functions (EMIFA Pinout Mode 1, AEM[2:0] = 001) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA (NAND), this pin is Chip Select 2 output EM_CS2 for usewith NAND flash.G0/ EM_CS2/ IPDC19 C22 I/O/Z This is the chip select for the default boot and ROM boot modes.GP[12] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA (NAND), this pin is Chip Select 3 output EM_CS3 for useLCD_OE/ EM_CS3/ IPD with NAND flash.C18 D22 I/O/ZGP[13] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA (NAND), it is Chip Select 4 output EM_CS4 for use withVSYNC/ EM_CS4/ IPD NAND flash.E19 H22 I/O/ZGP[32] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA (NAND), it is Chip Select 5 output EM_CS5 for use withHSYNC/ EM_CS5/ IPD NAND flash.F19 J22 I/O/ZGP[33] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
COUT0/EM_D0/ IPDD16 E21 I/O/ZGP[14] DV
DD33
COUT1/EM_D1/ IPDD18 G20 I/O/ZGP[15] DV
DD33
COUT2/EM_D2/ IPDD17 E22 I/O/ZGP[16] DV
DD33
These pins are multiplexed between VPBE (VENC), EMIFA (NAND),COUT3/EM_D3/ IPDE16 F20 I/O/Z
and GPIO.GP[17] DV
DD33
COUT4/EM_D4/ IPD
For EMIFA (NAND) AEM[2:0] = 001, these are the 8-bit bi-directionalE18 G21 I/O/ZGP[18] DV
DD33
data bus (EM_D[7:0]).
COUT5/EM_D5/ IPDE17 F22 I/O/ZGP[19] DV
DD33
COUT6/EM_D6/ IPDF16 F21 I/O/ZGP[20] DV
DD33
COUT7/EM_D7/ IPDF17 H20 I/O/ZGP[21] DV
DD33
Submit Documentation Feedback Device Overview 33
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-11. EMIFA Terminal Functions (EMIFA Pinout Mode 3, AEM[2:0] = 011)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
EMIFA FUNCTIONAL PINS: 8-Bit ASYNC/NOR with Reduced Address Reach (EMIFA Pinout Mode 3, AEM[2:0] = 011)
Actual pin functions are determined by the PINMUX0 and PINMUX1 register bit settings (e.g., PCIEN, AEAW[2:0], AEM[2:0], etc.). Formore details, see Section 3.7 ,Multiplexed Pin Configurations.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
For EMIFA, this pin is Chip Select 2 output EM_CS2 for use withasynchronous memories (i.e., NOR flash).G0/ EM_CS2/ IPD This is the chip select for the default boot and ROM boot modes.C19 C22 I/O/ZGP[12] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
For EMIFA, this pin is Chip Select 3 output EM_CS3 for use withasynchronous memories (i.e., NOR flash).LCD_OE/ EM_CS3/ IPDC18 D22 I/O/ZGP[13] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
For EMIFA, it is Chip Select 4 output EM_CS4 for use withasynchronous memories (i.e., NOR flash).VSYNC/ EM_CS4/ IPDE19 H22 I/O/ZGP[32] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIOD.
For EMIFA, it is Chip Select 5 output EM_CS5 for use withasynchronous memories (i.e., NOR flash).HSYNC/ EM_CS5/ IPDF19 J22 I/O/ZGP[33] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.C_WE/EM_R/ W/ IPDD13 C17 I/O/ZGP[35] DV
DD33
For EMIFA, it is read/write output EM_R/ W.
EM_WAIT/ IPU For EMIFA (ASYNC/NOR), this pin is wait state extension inputE15 D20 I/O/Z(RDY/ BSY) DV
DD33
EM_WAIT.
IPUEM_OE D15 D19 I/O/Z For EMIFA, it is output enable output EM_OE.DV
DD33
IPUEM_WE E14 C19 I/O/Z For EMIFA, it is write enable output EM_WE.DV
DD33
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
R2/EM_BA[0]/ IPD
For EMIFA, this is the Bank Address 0 output (EM_BA[0]). WhenC17 E20 I/O/ZGP[6]/(AEM1) DV
DD33
connected to an 8-bit asynchronous memory, this pin is the lowestorder bit of the byte address.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.
B2/EM_BA[1]/ IPD
For EMIFA, this is the Bank Address 1 output EM_BA[1]. WhenC16 C20 I/O/ZGP[5]/(AEM0) DV
DD33
connected to an 8-bit asynchronous memory, this pin is the 2nd bit ofthe address.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview34 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-11. EMIFA Terminal Functions (EMIFA Pinout Mode 3, AEM[2:0] = 011) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
CI0(CCD8)/
EM_A[20]/ IPDC12 C15 I/O/ZPINTA/ DV
DD33EM_D[7]/GP[44]
CI1(CCD9)/
EM_A[19]/ IPDB12 C14 I/O/ZPREQ/ DV
DD33EM_D[6]/GP[45]
CI2(CCD10)/
EM_A[18]/ IPDD11 A14 I/O/ZPRST/ DV
DD33EM_D[5]/GP[46]
CI3(CCD11)/
EM_A[17]/ IPDA11 B14 I/O/Z
This pin is multiplexed between VPFE (CCDC), EMIFA, PCI, andAD31/ DV
DD33
GPIO.EM_D[4]/GP[47]
CI4(CCD12)/
For EMIFA (AEM[2:0] = 011], these pins are the 8-bit bi-directionalEM_A[16]/ IPD
data bus (EM_D[7:0]).C11 B13 I/O/ZPGNT/ DV
DD33EM_D[3]/GP[48]
CI5(CCD13)/
EM_A[15]/ IPDB11 C13 I/O/ZAD29/ DV
DD33EM_D[2]/GP[49]
CI6(CCD14)/
EM_A[14]/ IPDA10 A13 I/O/ZAD27/ DV
DD33EM_D[1]/GP[50]
CI7(CCD15)/
EM_A[13]/ IPDB10 A12 I/O/ZAD25/ DV
DD33EM_D[0]/GP[51]
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[12]/ PCBE3/ IPDD10 B12 I/O/ZGP[89] DV
DD33
For EMIFA, it is address bit 12 output EM_A[12].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[11]/AD24/ IPDC10 C12 I/O/ZGP[90] DV
DD33
For EMIFA, it is address bit 11 output EM_A[11].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[10]/AD23/ IPDA9 B11 I/O/ZGP[91] DV
DD33
For EMIFA, it is address bit 10 output EM_A[10].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[9]/PIDSEL/ IPDD9 C11 I/O/ZGP[92] DV
DD33
For EMIFA, it is address bit 9 output EM_A[9].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[8]/AD21/ IPDB9 A11 I/O/ZGP[93] DV
DD33
For EMIFA, it is address bit 8 output EM_A[8].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[7]/AD22/ IPDC9 C10 I/O/ZGP[94] DV
DD33
For EMIFA, it is address bit 7 output EM_A[7].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[6]/AD20/ IPDD8 B10 I/O/ZGP[95] DV
DD33
For EMIFA, it is address bit 6 output EM_A[6].
This pin is multiplexed between EMIFA, PCI, and GPIO.EM_A[5]/AD19/ IPDB8 A10 I/O/ZGP[96] DV
DD33
For EMIFA, it is address bit 5 output EM_A[5].
R0/EM_A[4]/
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.IPDGP[10]/ A17 B21 I/O/Z
DV
DD33
For EMIFA, it is address bit 4 output EM_A[4].(AEAW2/PLLMS2)
Submit Documentation Feedback Device Overview 35
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-11. EMIFA Terminal Functions (EMIFA Pinout Mode 3, AEM[2:0] = 011) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.B0/LCD_FIELD/ IPDB18 D21 I/O/ZEM_A[3]/GP[11] DV
DD33
For EMIFA, it is address bit 3 output EM_A[3].
B1/EM_A[2]/
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.IPD(CLE)/GP[8]/ B16 A20 I/O/Z
DV
DD33
For EMIFA, it is address bit 2 output EM_A[2].(AEAW0/PLLMS0)
G1/EM_A[1]/
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.IPD(ALE)/GP[9]/ A16 B20 I/O/Z
DV
DD33
For EMIFA, it is address output EM_A[1].(AEAW1/PLLMS1)
This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.For EMIFA, this is Address output EM_A[0], which is the leastR1/ EM_A[0]/ IPDB17 C21 I/O/Z significant bit on a 32-bit word address.GP[7]/(AEM2) DV
DD33
For an 8-bit asynchronous memory, this pin is the 3rd bit of theaddress.
EMIFA FUNCTIONAL PINS: 8-Bit NAND (EMIFA Pinout Mode 3, AEM[2:0] = 011)
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andG1/EM_A[1]/
GPIO.IPD(ALE)/GP[9]/ A16 B20 I/O/Z
DV
DD33
When used for EMIFA (NAND) , this pin is the Address Latch Enable(AEAW1/PLLMS1)
output (ALE).
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andB1/EM_A[2]/
GPIO.IPD(CLE)/GP[8]/ B16 A20 I/O/Z
DV
DD33
When used for EMIFA (NAND) , this pin is the Command Latch(AEAW0/PLLMS0)
Enable output (CLE).
EM_WAIT/ IPUE15 D20 I/O/Z When used for EMIFA (NAND), it is ready/busy input (RDY/ BSY).(RDY/ BSY) DV
DD33
IPUEM_OE D15 D19 I/O/Z When used for EMIFA (NAND), this pin is read enable output ( RE).DV
DD33
IPUEM_WE E14 C19 I/O/Z When used for EMIFA (NAND), this pin is write enable output ( WE).DV
DD33
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, this pin is Chip Select 2 output EM_CS2 for use withNAND flash.G0/ EM_CS2/ IPDC19 C22 I/O/Z This is the chip select for the default boot and ROM boot modes.GP[12] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, this pin is Chip Select 3 output EM_CS3 for use withLCD_OE/ EM_CS3/ IPD NAND flash.C18 D22 I/O/ZGP[13] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, it is Chip Select 4 output EM_CS4 for use with NANDVSYNC/ EM_CS4/ IPD flash.E19 H22 I/O/ZGP[32] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
Device Overview36 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-11. EMIFA Terminal Functions (EMIFA Pinout Mode 3, AEM[2:0] = 011) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, it is Chip Select 5 output EM_CS5 for use with NANDHSYNC/ EM_CS5/ IPD flash.F19 J22 I/O/ZGP[33] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
CI7(CCD15) /EM_A[13]/ IPDB10 A12 I/O/ZAD25/ DV
DD33EM_D[0]/GP[51]
CI6(CCD14) /EM_A[14]/ IPDA10 A13 I/O/ZAD27/ DV
DD33EM_D[1]/GP[50]
CI5(CCD13) /EM_A[15]/ IPDB11 C13 I/O/ZAD29/ DV
DD33EM_D[2]/GP[49]
CI4(CCD12) /EM_A[16]/ IPDC11 B13 I/O/Z
These pins are multiplexed between VPFE (CCDC), EMIFA (NAND),PGNT/ DV
DD33
PCI, and GPIO.EM_D[3]/GP[48]
CI3(CCD11)/
For EMIFA (NAND) AEM[2:0] = 011, these pins are the 8-bitEM_A[17]/ IPD
bi-directional data bus (EM_D[7:0]).A11 B14 I/O/ZAD31/ DV
DD33EM_D[4]/GP[47]
CI2(CCD10)/
EM_A[18]/ IPDD11 A14 I/O/ZPRST/ DV
DD33EM_D[5]/GP[46]
CI1(CCD9)/
EM_A[19]/ IPDB12 C14 I/O/ZPREQ/ DV
DD33EM_D[6]/GP[45]
CI0(CCD8)/
EM_A[20]/ IPDC12 C15 I/O/ZPINTA/ DV
DD33EM_D[7]/GP[44]
Submit Documentation Feedback Device Overview 37
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-12. EMIFA Terminal Functions (EMIFA Pinout Mode 4, AEM[2:0] = 100)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
EMIFA FUNCTIONAL PINS: 8-Bit NAND (EMIFA Pinout Mode 4, AEM[2:0] = 100)
Actual pin functions are determined by the PINMUX0 and PINMUX1 register bit settings (e.g., PCIEN, AEAW[2:0], AEM[2:0], etc.). Formore details, see Section 3.7 ,Multiplexed Pin Configurations.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andG1/EM_A[1]/
GPIO.IPD(ALE)/GP[9]/ A16 B20 I/O/Z
DV
DD33
When used for EMIFA (NAND) , this pin is the Address Latch Enable(AEAW1/PLLMS1)
output (ALE).
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andB1/EM_A[2]/
GPIO.IPD(CLE)/GP[8]/ B16 A20 I/O/Z
DV
DD33
When used for EMIFA (NAND) , this pin is the Command Latch(AEAW0/PLLMS0)
Enable output (CLE).
EM_WAIT/ IPUE15 D20 I/O/Z When used for EMIFA (NAND), it is ready/busy input (RDY/ BSY).(RDY/ BSY) DV
DD33
IPUEM_OE D15 D19 I/O/Z When used for EMIFA (NAND), this pin is read enable output ( RE).DV
DD33
IPUEM_WE E14 C19 I/O/Z When used for EMIFA (NAND), this pin is write enable output ( WE).DV
DD33
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, this pin is Chip Select 2 output EM_CS2 for use withNAND flash.G0/ EM_CS2/ IPDC19 C22 I/O/Z This is the chip select for the default boot and ROM boot modes.GP[12] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, this pin is Chip Select 3 output EM_CS3 for use withLCD_OE/ EM_CS3/ IPD NAND flash.C18 D22 I/O/ZGP[13] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, it is Chip Select 4 output EM_CS4 for use with NANDVSYNC/ EM_CS4/ IPD flash.E19 H22 I/O/ZGP[32] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, it is Chip Select 5 output EM_CS5 for use with NANDHSYNC/ EM_CS5/ IPD flash.F19 J22 I/O/ZGP[33] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview38 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-12. EMIFA Terminal Functions (EMIFA Pinout Mode 4, AEM[2:0] = 100) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
CI7(CCD15) /EM_A[13]/ IPDB10 A12 I/O/ZAD25/ DV
DD33EM_D[0]/GP[51]
CI6(CCD14) /EM_A[14]/ IPDA10 A13 I/O/ZAD27/ DV
DD33EM_D[1]/GP[50]
CI5(CCD13) /EM_A[15]/ IPDB11 C13 I/O/ZAD29/ DV
DD33EM_D[2]/GP[49]
CI4(CCD12) /EM_A[16]/ IPDC11 B13 I/O/Z
These pins are multiplexed between VPFE (CCDC), EMIFA (NAND),PGNT/ DV
DD33
PCI, and GPIO.EM_D[3]/GP[48]
CI3(CCD11)/
For EMIFA (NAND) AEM[2:0] = 100, these pins are the 8-bitEM_A[17]/ IPD
bi-directional data bus (EM_D[7:0]).A11 B14 I/O/ZAD31/ DV
DD33EM_D[4]/GP[47]
CI2(CCD10)/
EM_A[18]/ IPDD11 A14 I/O/ZPRST/ DV
DD33EM_D[5]/GP[46]
CI1(CCD9)/
EM_A[19]/ IPDB12 C14 I/O/ZPREQ/ DV
DD33EM_D[6]/GP[45]
CI0(CCD8)/
EM_A[20]/ IPDC12 C15 I/O/ZPINTA/ DV
DD33EM_D[7]/GP[44]
Submit Documentation Feedback Device Overview 39
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-13. EMIFA Terminal Functions (EMIFA Pinout Mode 5, AEM[2:0] = 101)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
EMIFA FUNCTIONAL PINS: 8-Bit NAND (EMIFA Pinout Mode 5, AEM[2:0] = 101)
Actual pin functions are determined by the PINMUX0 and PINMUX1 register bit settings (e.g., PCIEN, AEAW[2:0], AEM[2:0], etc.). Formore details, see Section 3.7 ,Multiplexed Pin Configurations.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andG1/EM_A[1]/
GPIO.IPD(ALE)/GP[9]/ A16 B20 I/O/Z
DV
DD33
When used for EMIFA (NAND) , this pin is the Address Latch Enable(AEAW1/PLLMS1)
output (ALE).
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andB1/EM_A[2]/
GPIO.IPD(CLE)/GP[8]/ B16 A20 I/O/Z
DV
DD33
When used for EMIFA (NAND) , this pin is the Command Latch(AEAW0/PLLMS0)
Enable output (CLE).
EM_WAIT/ IPUE15 D20 I/O/Z When used for EMIFA (NAND), it is ready/busy input (RDY/ BSY).(RDY/ BSY) DV
DD33
IPUEM_OE D15 D19 I/O/Z When used for EMIFA (NAND), this pin is read enable output ( RE).DV
DD33
IPUEM_WE E14 C19 I/O/Z When used for EMIFA (NAND), this pin is write enable output ( WE).DV
DD33
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, this pin is Chip Select 2 output EM_CS2 for use withNAND flash.G0/ EM_CS2/ IPDC19 C22 I/O/Z This is the chip select for the default boot and ROM boot modes.GP[12] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, this pin is Chip Select 3 output EM_CS3 for use withLCD_OE/ EM_CS3/ IPD NAND flash.C18 D22 I/O/ZGP[13] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, it is Chip Select 4 output EM_CS4 for use with NANDVSYNC/ EM_CS4/ IPD flash.E19 H22 I/O/ZGP[32] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPBE (VENC), EMIFA (NAND), andGPIO.
For EMIFA, it is Chip Select 5 output EM_CS5 for use with NANDHSYNC/ EM_CS5/ IPD flash.F19 J22 I/O/ZGP[33] DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin isconnected and used as an EMIFA chip select signal, for proper deviceoperation, an external pullup resistor must be used to ensure theEM_CSx function defaults to an inactive (high) state.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview40 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-13. EMIFA Terminal Functions (EMIFA Pinout Mode 5, AEM[2:0] = 101) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
COUT0/EM_D0/ IPDD16 E21 I/O/ZGP[14] DV
DD33
COUT1/EM_D1/ IPDD18 G20 I/O/ZGP[15] DV
DD33
COUT2/EM_D2/ IPDD17 E22 I/O/ZGP[16] DV
DD33
These pins are multiplexed between VPBE (VENC), EMIFA (NAND),COUT3/EM_D3/ IPDE16 F20 I/O/Z
and GPIO.GP[17] DV
DD33
COUT4/EM_D4/ IPD
For EMIFA (NAND) AEM[2:0] = 101, these are the 8-bit bi-directionalE18 G21 I/O/ZGP[18] DV
DD33
data bus (EM_D[7:0]).
COUT5/EM_D5/ IPDE17 F22 I/O/ZGP[19] DV
DD33
COUT6/EM_D6/ IPDF16 F21 I/O/ZGP[20] DV
DD33
COUT7/EM_D7/ IPDF17 H20 I/O/ZGP[21] DV
DD33
Submit Documentation Feedback Device Overview 41
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-14. DDR2 Memory Controller Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
DDR2 Memory Controller
DDR_CLK W7 AB7 I/O/Z DV
DDR2
DDR2 Clock Output
DDR_CLK W8 AB8 I/O/Z DV
DDR2
DDR2 Differential Clock Output
DDR_CKE V8 AA8 I/O/Z DV
DDR2
DDR2 Clock Enable Output
DDR_CS T9 Y11 I/O/Z DV
DDR2
DDR2 Active Low Chip Select Output
DDR_WE T8 Y10 I/O/Z DV
DDR2
DDR2 Active Low Write Enable Output
DDR_DQM[3] T16 Y18 I/O/Z DV
DDR2
DDR2 Data Mask OutputsDQM3: For upper byte data bus DDR_D[31:24]DDR_DQM[2] T14 Y15 I/O/Z DV
DDR2
DQM2: For DDR_D[23:16]DDR_DQM[1] T6 Y7 I/O/Z DV
DDR2
DQM1: For DDR_D[15:8]
DQM0: For lower byte DDR_D[7:0]DDR_DQM[0] T4 Y4 I/O/Z DV
DDR2
DDR_RAS U7 Y8 I/O/Z DV
DDR2
DDR2 Row Access Signal Output
DDR_CAS T7 Y9 I/O/Z DV
DDR2
DDR2 Column Access Signal Output
DDR_DQS[0] U4 AA4 I/O/Z DV
DDR2
Data Strobe Input/Outputs for each byte of the 32-bit data bus. Theyare outputs to the DDR2 memory when writing and inputs whenDDR_DQS[1] U6 AA7 I/O/Z DV
DDR2
reading. They are used to synchronize the data transfers.DDR_DQS[2] U14 AA15 I/O/Z DV
DDR2
DQS3 : For upper byte DDR_D[31:24]DQS2: For DDR_D[23:16]
DQS1: For DDR_D[15:8]DDR_DQS[3] U16 AA18 I/O/Z DV
DDR2
DQS0: For bottom byte DDR_D[7:0]
DDR_BA[0] U8 AA9
Bank Select Outputs (BA[2:0]). Two are required to support 1Gb DDR2DDR_BA[1] V9 AB9 I/O/Z DV
DDR2
memories.DDR_BA[2] U9 AB10
DDR_A[12] W9 AA10
DDR_A[11] W10 AA11
DDR_A[10] U10 AB11
DDR_A[9] U11 AA12
DDR_A[8] V10 Y12
DDR_A[7] V11 AB12
DDR_A[6] W11 AA13 I/O/Z DV
DDR2
DDR2 Address Bus Output
DDR_A[5] W12 Y13
DDR_A[4] V12 AB13
DDR_A[3] U12 AA14
DDR_A[2] V13 Y14
DDR_A[1] U13 AB14
DDR_A[0] W13 AB15
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Fore more information, see the Recommended Operating Conditions table
42 Device Overview Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-14. DDR2 Memory Controller Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
DDR_D[31] T19 Y22
DDR_D[30] U19 AA21
DDR_D[29] V18 Y21
DDR_D[28] U18 AB20
DDR_D[27] W17 Y20
DDR_D[26] T18 AA20
DDR_D[25] U17 AB19
DDR_D[24] V17 Y19
DDR_D[23] T17 AA19
DDR_D[22] V16 AB18
DDR_D[21] W16 AB17
DDR_D[20] U15 Y17
DDR_D[19] V15 AA17
DDR_D[18] W15 AB16
DDR_D[17] V14 Y16
DDR_D[16] W14 AA16
DDR2 bi-directional data bus can be configured as 32-bits wide orI/O/Z DV
DDR2
16-bits wide.DDR_D[15] V7 AB6
DDR_D[14] W6 Y6
DDR_D[13] V6 AA6
DDR_D[12] W5 AB5
DDR_D[11] V5 Y5
DDR_D[10] U5 AA5
DDR_D[9] W4 W5
DDR_D[8] V4 AB4
DDR_D[7] W3 W4
DDR_D[6] V3 AB3
DDR_D[5] U3 Y3
DDR_D[4] V2 AA3
DDR_D[3] U2 AA2
DDR_D[2] U1 W2
DDR_D[1] T2 Y2
DDR_D[0] T1 Y1
DDR_VREF T15 W18 I
(3)
Reference voltage input for the SSTL_18 I/O buffers
DDR_VSSDLL T13 W15 GND
(3)
Ground for the DDR2 DLL
DDR_VDDDLL T12 W14 S
(3)
Power (1.8 Volts) for the DDR2 Digital Locked Loop
Impedance control for DDR2 outputs. This must be connected via aDDR_ZN T10 W12
(3)
200- resistor to DV
DDR2
.
Impedance control for DDR2 outputs. This must be connected via aDDR_ZP T11 W13
(3)
200- resistor to V
SS
.
Submit Documentation Feedback Device Overview 43
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-15. Peripheral Component Interconnect (PCI) Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
PCI
CI4(CCD12)/
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI,EM_A[16]/ IPDC11 B13 I/O/Z and GPIO.PGNT/ DV
DD33
In PCI mode, this pin is PCI bus grant (I)EM_D[3]/GP[48]
CI2(CCD10)/
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI,EM_A[18]/ IPDD11 A14 I/O/Z and GPIO.PRST/ DV
DD33
In PCI mode, this pin is PCI reset (I)EM_D[5]/GP[46]
CI1(CCD9)/
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI,EM_A[19]/ IPDB12 C14 I/O/Z and GPIO.PREQ/ DV
DD33
In PCI mode, this pin is the PCI bus request (O/Z)EM_D[6]/GP[45]
CI0(CCD8)/
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI,EM_A[20]/ IPDC12 C15 I/O/Z and GPIO.PINTA/ DV
DD33
In PCI mode, this pin is the PCI interrupt A (O/Z)EM_D[7]/GP[44]
EM_A[12]/ PCBE3/ IPD This pin is multiplexed between EMIFA, PCI, and GPIO.D10 B12 I/O/ZGP[89] DV
DD33
In PCI mode, this pin is the PCI command/byte enable 3 (I/O/Z).
HD3/VLYNQ_RXD2/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.B7 B8 I/O/ZPCBE2 /GP[61] DV
DD33
In PCI mode, this pin is the PCI command/byte enable 2 (I/O/Z)
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD11/MTXD3/ IPDC5 A5 I/O/Z and GPIO.PCBE1/GP[69] DV
DD33
In PCI mode, this pin is the PCI command/byte enable 1 (I/O/Z)
HRDY/MRXD2/ IPU This pin is multiplexed between HPI, EMAC, PCI, and GPIO.D2 C3 I/O/ZPCBE0/GP[80] DV
DD33
In PCI mode, this pin is the PCI command/byte enable 0 (I/O/Z)
EM_A[9]/PIDSEL/ IPD This pin is multiplexed between EMIFA, PCI, and GPIO.D9 C11 I/O/ZGP[92] DV
DD33
In PCI mode, this pin is the PCI initialization device select (I)
VLYNQ_CLOCK/ IPU This pin is multiplexed between VLYNQ, PCI, and GPIO.A7 A8 I/O/ZPCICLK/GP[57] DV
DD33
In PCI mode, this pin is the PCI clock (I)
HD4/VLYNQ_RXD3/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.C7 C8 I/O/ZPFRAME/GP[62] DV
DD33
In PCI mode, this pin is the PCI frame (I/O/Z)
HD5/VLYNQ_TXD0/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.A6 A7 I/O/ZPIRDY/GP[63] DV
DD33
In PCI mode, this pin is the PCI initiator ready (I/O/Z)
HD6/VLYNQ_TXD1/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.D6 C7 I/O/ZPTRDY/GP[64] DV
DD33
In PCI mode, this pin is the PCI target ready (I/O/Z)
HD7/VLYNQ_TXD2/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.B6 B7 I/O/ZPDEVSEL/GP[65] DV
DD33
In PCI mode, this pin is the PCI device select (I/O/Z)
HD8/VLYNQ_TXD3/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.A5 A6 I/O/ZPPERR/GP[66] DV
DD33
In PCI mode, this pin is the PCI parity error (I/O/Z)
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD9/MCOL/ IPDC6 C6 I/O/Z and GPIO.PSTOP/GP[67] DV
DD33
In PCI mode, this pin is the PCI stop (I/O/Z)
HD10/MCRS/ IPD This pin is multiplexed between HPI, EMAC, PCI, and GPIO.B5 B6 I/O/ZPSERR/GP[68] DV
DD33
In PCI mode, this pin is the PCI system error (I/O/Z)
HD12/MTXD2/ IPD This pin is multiplexed between HPI, EMAC, PCI, and GPIO.D5 C5 I/O/ZPPAR/GP[70] DV
DD33
In PCI mode, this pin is the PCI parity (I/O/Z)
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
44 Device Overview Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-15. Peripheral Component Interconnect (PCI) Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
CI3(CCD11)/
EM_A[17]/ IPDA11 B14 I/O/ZAD31/ DV
DD33EM_D[4]/GP[47]
IPDAD30 E12 D14 I/O/Z
DV
DD33
CI5(CCD13)/
EM_A[15]/ IPDB11 C13 I/O/ZAD29/ DV
DD33EM_D[2]/GP[49]
IPDAD28 E11 D13 I/O/Z
DV
DD33
CI6(CCD14)/
EM_A[14]/ IPDA10 A13 I/O/ZAD27/ DV
DD33EM_D[1]/GP[50]
IPDAD26 E10 D12 I/O/Z
DV
DD33
CI7(CCD15)/
EM_A[13]/ IPDB10 A12 I/O/ZAD25/ DV
DD33EM_D[0]/GP[51]
IPDEM_A[11]/AD24/GP[90] C10 C12 I/O/Z
DV
DD33
IPD
These pins are multiplexed between VPFE (CCDC), PCI, EMIFA,EM_A[10]/AD23/GP[91] A9 B11 I/O/Z
DV
DD33
HPI, VLYNQ, EMAC (MII), and GPIO.For PCI, these pins are PCI data-address bus [31:0] (I/O/Z)IPDEM_A[7]/AD22/GP[94] C9 C10 I/O/Z
DV
DD33
IPDEM_A[8]/AD21/GP[93] B9 A11 I/O/Z
DV
DD33
IPDEM_A[6]/AD20/GP[95] D8 B10 I/O/Z
DV
DD33
IPDEM_A[5]/AD19/GP[96] B8 A10 I/O/Z
DV
DD33
HD0/VLYNQ_SCRUN/ IPUC8 B9 I/O/ZAD18/GP[58] DV
DD33
HD2/VLYNQ_RXD1/ IPDA8 A9 I/O/ZAD17/GP[60] DV
DD33
HD1/VLYNQ_RXD0/ IPDD7 C9 I/O/ZAD16/GP[59] DV
DD33
HD14/MTXD0/ IPDD4 B5 I/O/ZAD15/GP[72] DV
DD33
HD13/MTXD1/ IPDB4 B4 I/O/ZAD14/GP[71] DV
DD33
HHWIL/MRXDV/ IPDC4 D3 I/O/ZAD13/GP[74] DV
DD33
HD15/MTXCLK/ IPDA4 A4 I/O/ZAD12/GP[73] DV
DD33
HCNTL1/MTXEN/ IPDD3 C4 I/O/ZAD11/GP[75] DV
DD33
Submit Documentation Feedback Device Overview 45
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-15. Peripheral Component Interconnect (PCI) Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
HCNTL0/MRXER/ IPDB3 B2 I/O/ZAD10/GP[76] DV
DD33
HDS2/MRXD0/ IPUC3 C2 I/O/ZAD9/GP[78] DV
DD33
HR/ W/MRXCLK/ IPDA3 A3 I/O/ZAD8/GP[77] DV
DD33
HDS1/MRXD1/ IPUB2 B3 I/O/ZAD7/GP[79] DV
DD33
HINT/MRXD3/ IPUC2 D2 I/O/ZAD6/GP[82] DV
DD33
These pins are multiplexed between VPFE (CCDC), PCI, EMIFA,HCS/MDCLK/ IPUC1 D1 I/O/Z HPI, VLYNQ, EMAC (MII), and GPIO.AD5/GP[81] DV
DD33
For PCI, these pins are PCI data-address bus [31:0] (I/O/Z)IPDAD4/GP[3] E4 F2 I/O/Z
DV
DD33
HAS/MDIO/ IPUD1 C1 I/O/ZAD3/GP[83] DV
DD33
IPDAD2/GP[2] E3 F1 I/O/Z
DV
DD33
IPDAD1/GP[1] E2 E2 I/O/Z
DV
DD33
IPDAD0/GP[0] E1 E1 I/O/Z
DV
DD33
46 Device Overview Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-16. EMAC and MDIO Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
EMAC
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HCNTL1/MTXEN/ IPDD3 C4 I/O/Z and GPIO.AD11/GP[75] DV
DD33
In Ethernet MAC mode, it is Transmit Enable output MTXEN.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD15/MTXCLK/ IPDA4 A4 I/O/Z and GPIO.AD12/GP[73] DV
DD33
In Ethernet MAC mode, it is Transmit Clock input MTXCLK.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD9/MCOL/ IPDC6 C6 I/O/Z and GPIO.PSTOP/GP[67] DV
DD33
In Ethernet MAC mode, it is Collision Detect input MCOL.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD11/MTXD3/ IPDC5 A5 I/O/Z and GPIO.PCBE1/GP[69] DV
DD33
In Ethernet MAC mode, it is Transmit Data 3 output MTXD3.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD12/MTXD2/ IPDD5 C5 I/O/Z and GPIO.PPAR/GP[70] DV
DD33
In Ethernet MAC mode, it is Transmit Data 2 output MTXD2.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD13/MTXD1/ IPDB4 B4 I/O/Z and GPIO.AD14/GP[71] DV
DD33
In Ethernet MAC mode, it is Transmit Data 1 output MTXD1.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD14/MTXD0/ IPDD4 B5 I/O/Z and GPIO.AD15/GP[72] DV
DD33
In Ethernet MAC mode, it is Transmit Data 0 output MTXD0.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HR/ W/MRXCLK/ IPDA3 A3 I/O/Z and GPIO.AD8/GP[77] DV
DD33
In Ethernet MAC mode, it is Receive Clock input MRXCLK.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HHWIL/MRXDV/ IPDC4 D3 I/O/Z and GPIO.AD13/GP[74] DV
DD33
In Ethernet MAC mode, it is Receive Data Valid input MRXDV.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HCNTL0/MRXER/ IPDB3 B2 I/O/Z and GPIO.AD10/GP[76] DV
DD33
In Ethernet MAC mode, it is Receive Error input MRXER.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HD10/MCRS/ IPDB5 B6 I/O/Z and GPIO.PSERR/GP[68] DV
DD33
In Ethernet MAC mode, it is Carrier Sense input MCRS.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HINT/MRXD3/ IPUC2 D2 I/O/Z and GPIO.AD6/GP[82] DV
DD33
In Ethernet MAC mode, it is Receive Data 3 input MRXD3.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HRDY/MRXD2/ IPUD2 C3 I/O/Z and GPIO.PCBE0/GP[80] DV
DD33
In Ethernet MAC mode, it is Receive Data 2 input MRXD2.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HDS1/MRXD1/ IPUB2 B3 I/O/Z and GPIO.AD7/GP[79] DV
DD33
In Ethernet MAC mode, it is Receive data 1 input MRXD1.
This pin is multiplexed between HPI, Ethernet MAC (EMAC), PCI,HDS2/MRXD0/ IPUC3 C2 I/O/Z and GPIO.AD9/GP[78] DV
DD33
In Ethernet MAC mode, it is Receive Data 0 input MRXD0.
MDIO
This pin is multiplexed between HPI, MDIO, PCI, and GPIO.HCS/MDCLK/ IPUC1 D1 I/O/Z In Ethernet MAC mode, it is Management Data Clock outputAD5/GP[81] DV
DD33
MDCLK.
HAS/MDIO/ IPU This pin is multiplexed between HPI, MDIO, PCI, and GPIO.D1 C1 I/O/ZAD3/GP[83] DV
DD33
In Ethernet MAC mode, it is Management Data I/O MDIO (I/O/Z).
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 47
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-17. VLYNQ Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
VLYNQ
VLYNQ_CLOCK/ IPU This pin is multiplexed between VLYNQ, PCI, and GPIO.A7 A8 I/O/ZPCICLK/GP[57] DV
DD33
For VLYNQ, it is the clock VLYNQ_CLOCK (I/O/Z).
This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.HD0/VLYNQ_SCRUN/ IPUC8 B9 I/O/Z For VLYNQ, it is the Serial Clock run request VLYNQ_SCRUNAD18/GP[58] DV
DD33
(I/O/Z).
HD8/VLYNQ_TXD3/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.A5 A6 I/O/ZPPERR/GP[66] DV
DD33
For VLYNQ, it is transmit bus bit 3 output VLYNQ_TXD3.
HD7/VLYNQ_TXD2/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.B6 B7 I/O/ZPDEVSEL/GP[65] DV
DD33
For VLYNQ, it is transmit bus bit 2 output VLYNQ_TXD2.
HD6/VLYNQ_TXD1/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.D6 C7 I/O/ZPTRDY/GP[64] DV
DD33
For VLYNQ, it is transmit bus bit 1 output VLYNQ_TXD1.
HD5/VLYNQ_TXD0/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.A6 A7 I/O/ZPIRDY/GP[63] DV
DD33
For VLYNQ, it is transmit bus bit 0 output VLYNQ_TXD0.
HD4/VLYNQ_RXD3/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.C7 C8 I/O/ZPFRAME/GP[62] DV
DD33
For VLYNQ, it is receive bus bit 3 input VLYNQ_RXD3.
HD3/VLYNQ_RXD2/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.B7 B8 I/O/ZPCBE2/GP[61] DV
DD33
For VLYNQ, it is receive bus bit 2 input VLYNQ_RXD2.
HD2/VLYNQ_RXD1/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.A8 A9 I/O/ZAD17/GP[60] DV
DD33
For VLYNQ, it is receive bus bit 1 input VLYNQ_RXD1.
HD1/VLYNQ_RXD0/ IPD This pin is multiplexed between HPI, VLYNQ, PCI, and GPIO.D7 C9 I/O/ZAD16/GP[59] DV
DD33
For VLYNQ, it is receive bus bit 0 input VLYNQ_RXD0.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview48 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-18. Host-Port Interface Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
Host-Port Interface (HPI)
HD0/VLYNQ_SCRUN/ IPUC8 B9AD18/GP[58] DV
DD33
HD1/VLYNQ_RXD0/
D7 C9AD16/GP[59]
HD2/VLYNQ_RXD1/
A8 A9AD17/GP[60]
HD3/VLYNQ_RXD2/
B7 B8PCBE2/GP[61]
HD4/VLYNQ_RXD3/
C7 C8PFRAME/GP[62]
HD5/VLYNQ_TXD0/
A6 A7PIRDY/GP[63]
HD6/VLYNQ_TXD1/
D6 C7PTRDY/GP[64]
This pin is multiplexed between HPI, VLYNQ or EMAC, PCI,HD7/VLYNQ_TXD2/
B6 B7
and GPIO.PDEVSEL/GP[65]
I/O/Z In HPI mode, these pins are host-port data pins HD[15:0]HD8/VLYNQ_TXD3/ IPD
(I/O/Z) and are multiplexed internally with the HPI addressA5 A6PPERR/GP[66] DV
DD33
lines.HD9/MCOL/
C6 C6PSTOP/GP[67]
HD10/MCRS/
B5 B6PSERR/GP[68]
HD11/MTXD3/
C5 A5PCBE1/GP[69]
HD12/MTXD2/
D5 C5PPAR/GP[70]
HD13/MTXD1/
B4 B4AD14/GP[71]
HD14/MTXD0/
D4 B5AD15/GP[72]
HD15/MTXCLK/
A4 A4AD12/GP[73]
This pin is multiplexed between HPI, EMAC, PCI, and GPIO.HHWIL/MRXDV/ IPDC4 D3 I/O/Z In HPI mode, this pin is half-word identification input HHWILAD13/GP[74] DV
DD33
(I).
This pin is multiplexed between HPI, EMAC, PCI, and GPIO.In HPI mode, this pin is control input 1 HCNTL1 ( I). The stateHCNTL1/MTXEN/ IPDD3 C4 I/O/Z of HCNTL1 and HCNTL0 determines if address, data, orAD11/GP[75] DV
DD33
control information is being transmitted between an externalhost and the DM6437.
This pin is multiplexed between HPI, EMAC, PCI, and GPIO.In HPI mode, this pin is control input 0 HCNTL0 ( I). The stateHCNTL0/MRXER/ IPDB3 B2 I/O/Z of HCNTL1 and HCNTL0 determines if address, data, orAD10/GP[76] DV
DD33
control information is being transmitted between an externalhost and the DM6437.
This pin is multiplexed between HPI, EMAC, PCI, and GPIO.HR/ W/MRXCLK/ IPDA3 A3 I/O/Z In HPI mode, this pin is host read or write select inputAD8/GP[77] DV
DD33
HR/ W( I).
HDS2/MRXD0/ IPU This pin is multiplexed between HPI, EMAC, PCI, and GPIO.C3 C2 I/O/ZAD9/GP[78] DV
DD33
In HPI mode, this pin is host data strobe input 2 HDS2 ( I).
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 49
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-18. Host-Port Interface Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
HDS1/MRXD1/ IPU This pin is multiplexed between HPI, EMAC, PCI, and GPIO.B2 B3 I/O/ZAD7/GP[79] DV
DD33
In HPI mode, this pin is host data strobe input 1 HDS1 ( I).
This pin is multiplexed between HPI, EMAC, PCI, and GPIO.HRDY/MRXD2/ IPUD2 C3 I/O/Z In HPI mode, this pin is host ready output from DSP to hostPCBE0/GP[80] DV
DD33
(O/Z).
This pin is multiplexed between HPI, MDIO, PCI, and GPIO.HCS/MDCLK/ IPUC1 D1 I/O/Z In HPI mode, this pin is HPI active low chip select input HCSAD5/GP[81] DV
DD33
(I).
HINT/RXD3/ IPU This pin is multiplexed between HPI, EMAC, PCI, and GPIO.C2 D2 I/O/ZAD6/GP[82] DV
DD33
In HPI mode, this pin is host interrupt output HINT ( O/Z).
This pin is multiplexed between HPI, MDIO, PCI, and GPIO.HAS/MDIO/ IPU In HPI mode, this pin is host address strobe HAS ( I).D1 C1 I/O/ZAD3/GP[83] DV
DD33
For proper HPI operation, if this pin is routed out, it must bepulled up via an external resistor.
Device Overview50 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-19. VPFE Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
VIDEO/IMAGE IN (VPFE)
This pin is multiplexed between the VPFE (CCDC) and GPIO.IPD In VPFE mode, this pin is the pixel clock input (PCLK) used to loadPCLK/GP[54] A14 A18 I/O/Z
DV
DD33
image data into the CCD Controller (CCDC) on pins CI[7:0] andYI[7:0].
This pin is multiplexed between the VPFE (CCDC) and GPIO.IPD In VPFE mode, this pin is the vertical synchronization signal (VD) thatVD/GP[53] A13 A17 I/O/Z
DV
DD33
can be either an input (slave mode) or an output (master mode),which signals the start of a new frame to the CCDC.
This pin is multiplexed between the VPFE (CCDC) and GPIO.IPD In VPFE mode, this pin is the horizontal synchronization signal (HD)HD/GP[52] A15 A19 I/O/Z
DV
DD33
that can be either an input (slave mode) or an output (master mode),which signals the start of a new line to the CCDC.
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI, andGPIO.
CI7(CCD15)/
When used by the CCDC as input CI7, it supports several modes:EM_A[13]/ IPD
In 16-bit CCD Raw mode, it is input CCD15.B10 A12 I/O/ZAD25/ DV
DD33
In 16-bit YCbCr mode, it is time multiplexed between CB7 and CR7EM_D[0]/GP[51]
inputs.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y7, CB7, andCR7 of the upper 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI, andGPIO.
CI6(CCD14)/
When used by the CCDC as input CI6, it supports several modes:EM_A[14]/ IPD
In 16-bit CCD Raw mode, it is input CCD14.A10 A13 I/O/ZAD27/ DV
DD33
In 16-bit YCbCr mode, it is time multiplexed between CB6 and CR6EM_D[1]/GP[50]
inputs.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y6, CB6, andCR6 of the upper 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI, andGPIO.
CI5(CCD13)/
When used by the CCDC as input CI5, it supports several modes:EM_A[15]/ IPD
In 16-bit CCD Raw mode, it is input CCD13.B11 C13 I/O/ZAD29/ DV
DD33
In 16-bit YCbCr mode, it is time multiplexed between CB5, and CR5EM_D[2]/GP[49]
inputs.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y5, CB5, andCR5 of the upper 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI, andGPIO.
CI4(CCD12)/ When used by the CCDC as input CI4, it supports several modes:EM_A[16]/ IPDC11 B13 I/O/Z
In 16-bit CCD Raw mode, it is input CCD12.PGNT/ DV
DD33
In 16-bit YCbCr mode, it is time multiplexed between CB4, and CR4EM_D[3]/GP[48]
inputs.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y4, CB4, andCR4 of the upper 8-bit channel.
(4)
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal(4) In addition to these default functions, in YCbCr mode, the VPFE CCD Configuration register CCDCFG.YCINSWP bit field allows theuser to swap the function of the YI[7:0] and CI[7:0] pins.
Submit Documentation Feedback Device Overview 51
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-19. VPFE Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI, andGPIO.
CI3(CCD11)/ When used by the CCDC as input CI3, it supports several modes:EM_A[17]/ IPDA11 B14 I/O/Z
In 16-bit CCD Raw mode, it is input CCD11.AD31/ DV
DD33
In 16-bit YCbCr mode, it is time multiplexed between CB3, and CR3EM_D[4]/GP[47]
inputs.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y3, CB3, andCR3 of the upper 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI, andGPIO.
CI2(CCD10)/ This pin is CCDC input CI2 and it supports several modes:EM_A[18]/ IPDD11 A14 I/O/Z
In 16-bit CCD Raw mode, it is input CCD10.PRST/ DV
DD33
In 16-bit YCbCr mode, it is time multiplexed between CB2, and CR2EM_D[5]/GP[46]
inputs.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y2, CB2, andCR2 of the upper 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI, andGPIO.
CI1(CCD9)/ This pin is CCDC input CI1 and it supports several modes:EM_A[19]/ IPDB12 C14 I/O/Z
In 16-bit CCD Raw mode, it is input CCD9.PREQ/ DV
DD33
In 16-bit YCbCr mode, it is time multiplexed between CB1, and CR1EM_D[6]/GP[45]
inputs.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y1, CB1, andCR1 of the upper 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC), EMIFA, PCI, andGPIO.
CI0(CCD8)/ This pin is CCDC input CI0 and it supports several modes:EM_A[20]/ IPDC12 C15 I/O/Z
In 16-bit CCD Raw mode, it is input CCD8.PINTA/ DV
DD33
In 16-bit YCbCr mode, it is time multiplexed between CB0, and CR0EM_D[7]/GP[44]
inputs.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y0, CB0, andCR0 of the upper 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC) and GPIO.
This pin is CCDC input YI7 and it supports several modes:YI7(CCD7)/ IPDA12 A15 I/O/Z
In 16-bit CCD Raw mode, it is input CCD7.GP[43] DV
DD33
In 16-bit YCbCr mode, it is input Y7.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y7, CB7, andCR7 of the lower 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC) and GPIO.
This pin is CCDC input YI6 and it supports several modes:YI6(CCD6)/ IPDB13 B15 I/O/Z
In 16-bit CCD Raw mode, it is input CCD6.GP[42] DV
DD33
In 16-bit YCbCr mode, it is input Y6.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y6, CB6, andCR6 of the lower 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC) and GPIO.
This pin is CCDC input YI5 and it supports several modes:YI5(CCD5)/ IPDC13 B16 I/O/Z
In 16-bit CCD Raw mode, it is input CCD5.GP[41] DV
DD33
In 16-bit YCbCr mode, it is input Y5.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y5, CB5, andCR5 of the lower 8-bit channel.
(4)
Device Overview52 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-19. VPFE Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
This pin is multiplexed between the VPFE(CCDC) and GPIO.
This pin is CCDC input YI4 and it supports several modes:YI4(CCD4)/ IPD
In 16-bit CCD Raw mode, it is input CCD4.D14 C18 I/O/ZGP[40] DV
DD33
In 16-bit YCbCr mode, it is input Y4.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y4, CB4, andCR4 of the lower 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC) and GPIO.
This pin is CCDC input YI3 and it supports several modes:YI3(CCD3)/ IPD
In 16-bit CCD Raw mode, it is input CCD3.B14 A16 I/O/ZGP[39] DV
DD33
In 16-bit YCbCr mode, it is input Y3.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y3, CB3, andCR3 of the lower 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC) and GPIO.
This pin is CCDC input YI2 and it supports several modes:YI2(CCD2)/ IPD
In 16-bit CCD Raw mode, it is input CCD2.C14 B17 I/O/ZGP[38] DV
DD33
In 16-bit YCbCr mode, it is input Y2.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y2, CB2, andCR2 of the lower 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC) and GPIO.
This pin is CCDC input YI1 and it supports several modes:YI1(CCD1)/ IPD
In 16-bit CCD Raw mode, it is input CCD1.B15 B18 I/O/ZGP[37] DV
DD33
In 16-bit YCbCr mode, it is input Y1.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y1, CB1, andCR1 of the lower 8-bit channel.
(4)
This pin is multiplexed between the VPFE (CCDC) and GPIO.
This pin is CCDC input YI0 and it supports several modes:YI0(CCD0)/ IPD
In 16-bit CCD Raw mode, it is input CCD0.C15 B19 I/O/ZGP[36] DV
DD3
In 16-bit YCbCr mode, it is input Y0.
(4)
In 8-bit YCbCr mode, it is time multiplexed between Y0, CB0, andCR0 of the lower 8-bit channel.
(4)
C_WE/EM_R/ W/ IPD This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.D13 C17 I/O/ZGP[35] DV
DD33
In VPFE mode, it is the CCD Controller write enable input C_WE.
This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.C_FIELD/EM_A[21]/ IPDD12 C16 I/O/Z In VPFE mode, it is CCDC field identification bidirectional signalGP[34] DV
DD33
C_FIELD.
Submit Documentation Feedback Device Overview 53
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-20. VPBE Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
VIDEO OUT (VPBE)
HSYNC/ EM_CS5/ IPD This pin is multiplexed between VPBE, EMIFA, and GPIO.F19 J22 I/O/ZGP[33] DV
DD33
In VPBE mode, this pin is the VPBE Horizontal Sync (I/O/Z).
VSYNC/ EM_CS4/ IPD This pin is multiplexed between VPBE, EMIFA, and GPIO.E19 H22 I/O/ZGP[32] DV
DD33
In VPBE mode, this pin is the VPBE Vertical Sync (I/O/Z).
IPD This pin is multiplexed between VPBE and GPIO.VCLK/GP[31] D19 G22 I/O/Z
DV
DD33
In VPBE mode, this pin is the VPBE Clock Output.
IPD This pin is multiplexed between VPBE and GPIO.VPBECLK/GP[30] G19 K22 I/O/Z
DV
DD33
In VPBE mode, this pin is the VPBE Clock Input.
COUT0/EM_D[0]/ IPD This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.D16 E21 I/O/ZGP[14] DV
DD33
In VPBE mode, this pin is the video encoder (VENC) output COUT0.
COUT1/EM_D[1]/ IPD This pin is multiplexed between VPBE(VENC), EMIFA, and GPIO.D18 G20 I/O/ZGP[15] DV
DD33
In VPBE mode, this pin is the video encoder (VENC) output COUT1.
COUT2/EM_D[2]/ IPD This pin is multiplexed between VPBE(VENC), EMIFA, and GPIO.D17 E22 I/O/ZGP[16] DV
DD33
In VPBE mode, this pin is the video encoder (VENC) output COUT2.
COUT3/EM_D[3]/ IPD This pin is multiplexed between VPBE(VENC), EMIFA, and GPIO.E16 F20 I/O/ZGP[17] DV
DD33
In VPBE mode, this pin is the video encoder (VENC) output COUT3.
COUT4/EM_D[4]/ IPD This pin is multiplexed between VPBE(VENC), EMIFA, and GPIO.E18 G21 I/O/ZGP[18] DV
DD33
In VPBE mode, this pin is the video encoder (VENC) output COUT4.
COUT5/EM_D[5]/ IPD This pin is multiplexed between VPBE(VENC), EMIFA, and GPIO.E17 F22 I/O/ZGP[19] DV
DD33
In VPBE mode, this pin is the video encoder (VENC) output COUT5.
COUT6/EM_D[6]/ IPD This pin is multiplexed between VPBE(VENC), EMIFA, and GPIO.F16 F21 I/O/ZGP[20] DV
DD33
In VPBE mode, this pin is the video encoder (VENC) output COUT6.
COUT7/EM_D[7]/ IPD This pin is multiplexed between VPBE (VENC), EMIFA, and GPIO.F17 H20 I/O/ZGP[21] DV
DD33
In VPBE mode, this pin is the video encoder (VENC) output COUT7.
YOUT0/GP[22]/ IPDF18 J20 I/O/Z(BOOTMODE0) DV
DD33
YOUT1/GP[23]/ IPDF15 K20 I/O/Z(BOOTMODE1) DV
DD33
YOUT2/GP[24]/ IPD
These pins are multiplexed between VPBE (VENC) and GPIO.G15 L20 I/O/Z(BOOTMODE2) DV
DD33
After reset, these are video encoder (VENC) outputs 6:0, YOUT[6:0].
YOUT3/GP[25]/ IPD
For proper DM6437 device operation, the YOUT6 pin must be pulledG16 H21 I/O/Z(BOOTMODE3) DV
DD33
down via an external resistor.For proper DM6437 device operation, the YOUT5 pin must be pulledYOUT4/GP[26]/ IPDG17 K19 I/O/Z
up via an external resistor.(FASTBOOT) DV
DD33
IPUYOUT5/GP[27] H17 L19 I/O/Z
DV
DD33
YOUT6/ IPDH16 J21 I/O/ZGP[28] DV
DD33
YOUT7/ IPD This pin is multiplexed between VPBE (VENC) and GPIO.H15 K21 I/O/ZGP[29] DV
DD33
In VPBE mode, this pin is the VENC output 7, YOUT7.
LCD_OE/ EM_CS3/ IPD This pin is multiplexed between VPBE, EMIFA, and GPIO.C18 D22 I/O/ZGP[13] DV
DD33
In VPBE mode, it is the LCD output enable LCD_OE (O/Z).
This pin is multiplexed between VPBE, EMIFA, and GPIO.G0/ EM_CS2/ IPDC19 C22 I/O/Z In VPBE mode, this pin is the RGB666/888 Green output data bit 0,GP[12] DV
DD33
G0.
This pin is multiplexed between VPBE, EMIFA, and GPIO.B0/LCD_FIELD/ IPDB18 D21 I/O/Z In VPBE mode, this pin is the RGB666/888 Blue output data bit 0, B0EM_A[3]/GP[11] DV
DD33
or LCD interlaced LCD_FIELD (I/O/Z).
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview54 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-20. VPBE Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
R0/EM_A[4]/
IPD This pin is multiplexed between VPBE, EMIFA, and GPIO.GP[10]/ A17 B21 I/O/Z
DV
DD33
In VPBE mode, this pin is the RGB666/888 Red output data bit 0, R0.(AEAW2/PLLMS2)
G1/EM_A[1]/ This pin is multiplexed between VPBE, EMIFA, and GPIO.IPD(ALE)/GP[9]/ A16 B20 I/O/Z In VPBE mode, this pin is the RGB666/888 Green output data bit 1,DV
DD33(AEAW1/PLLMS1) G1.
B1/EM_A[2]/ This pin is multiplexed between VPBE, EMIFA, and GPIO.IPD(CLE)/GP[8]/ B16 A20 I/O/Z In VPBE mode, this pin is the RGB666/888 Blue output data bit 1,DV
DD33(AEAW0/PLLMS0) B1.
R1/EM_A[0]/ IPD This pin is multiplexed between VPBE, EMIFA, and GPIO.B17 C21 I/O/ZGP[7]/(AEM2) DV
DD33
In VPBE mode, this pin is the RGB666/888 Red output data bit 1, R1.
R2/EM_BA[0]/ IPD This pin is multiplexed between VPBE, EMIFA, and GPIO.C17 E20 I/O/ZGP[6]/(AEM1) DV
DD33
In VPBE mode, this pin is the RGB666/888 Red output data bit 2, R2.
This pin is multiplexed between VPBE, EMIFA, and GPIO.B2/EM_BA[1]/ IPDC16 C20 I/O/Z In VPBE mode, this pin is the RGB666/888 Blue output data bit 2,GP[5]/(AEM0) DV
DD33
B2.
Submit Documentation Feedback Device Overview 55
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-21. DAC [Part of VPBE] Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
DAC[A:D]
Reference voltage input (0.5 V)
DAC_VREF N19 V22 A I
(3)
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be tied directly to V
SS
.
Output of DAC A
DAC_IOUT_A P19 V21 A O
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be left unconnected.
Output of DAC B
DAC_IOUT_B P18 U22 A O
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be left unconnected.
Output of DAC C
DAC_IOUT_C N18 T21 A O
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be left unconnected.
Output of DAC D
DAC_IOUT_D N17 T22 A O
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be left unconnected.
1.8 V Analog I/O power
V
DDA_1P8V
P17 V20 S
(3)
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be tied directly to V
SS
.
Analog I/O ground
V
SSA_1P8V
P16 U20 GND
(3)
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be tied directly to V
SS
.
1.20 V Analog core supply voltage(-7/-6/-5/-4/-L/-Q6/-Q5/-Q4 devices)
1.05 V Analog core supply voltageV
DDA_1P1V
N15 T20 S
(3)
(-7/-6/-5/-4/-L/-Q5 devices)
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be tied directly to V
SS
.
Analog core ground
V
SSA_1P1V
P15 T19 GND
(3)
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be tied directly to V
SS
.
External resistor connection for current bias configuration.This must be connected via a 4 k resistor to V
SSA_1P8V
.DAC_RBIAS N16 U21 A I
(3)
Note: If the DAC peripheral is not being used, for proper deviceoperation, this pin must be tied directly to V
SS
.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) Specifies the operating I/O supply voltage for each signal(3) For more information, see the Recommended Operating Conditions table
Device Overview56 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-22. I2C Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
I2C
For I2C, this pin is I2C clock. In I2C master mode, this pin is anoutput. In I2C slave mode, this pin is an input.SCL M2 N2 I/O/Z DV
DD33
When the I2C module is used, for proper device operation, this pinmust be pulled up via an external resistor.
For I2C, this pin is the I2C bi-directional data signal.SDA M3 P2 I/O/Z DV
DD33
When the I2C module is used, for proper device operation, this pinmust be pulled up via an external resistor.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 57
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-23. Multichannel Buffered Serial Port 0 and Multichannel Buffered Serial Port 1 (McBSP0 andMcBSP1) Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
Multichannel Buffered Serial Port 0 (McBSP0)
For more details on pin multiplexing, see Section 3.7 ,Multiplexed Pin Configurations.
CLKS0/TOUT0L/ IPD This pin is multiplexed between McBSP0, Timer0, and GPIO.J4 L3 I/O/ZGP[97] DV
DD33
For McBSP0, it is McBSP0 external clock source (I).
ACLKR0/CLKX0/ IPD This pin is multiplexed between McASP0, McBSP0, and GPIO.H1 J1 I/O/ZGP[99] DV
DD33
For McBSP0, it is McBSP0 transmit clock CLKX0 (I/O/Z).
AHCLKR0/CLKR0/ IPD This pin is multiplexed between McASP0, McBSP0, and GPIO.J2 K1 I/O/ZGP[101] DV
DD33
For McBSP0, it is McBSP0 receive clock CLKR0 (I/O/Z).
This pin is multiplexed between McASP0, McBSP0, and GPIO.AXR0[2]/FSX0/ IPDH3 J2 I/O/Z For McBSP0, it is McBSP0 transmit frame synchronization FSX0GP[103] DV
DD33
(I/O/Z).
This pin is multiplexed between McASP0, McBSP0, and GPIO.AXR0[3]/FSR0/ IPDG4 J3 I/O/Z For McBSP0, it is McBSP0 receive frame synchronization FSR0GP[102] DV
DD33
(I/O/Z).
AXR0[1]/DX0/ IPD This pin is multiplexed between McASP0, McBSP0, and GPIO.J3 K2 I/O/ZGP[104] DV
DD33
For McBSP0, it is McBSP0 data transmit output DX0 (O/Z).
AFSR0/DR0/ IPD This pin is multiplexed between McASP0, McBSP0, and GPIO.H4 K3 I/O/ZGP[100] DV
DD33
For McBSP0, it is McBSP0 data receive input DR0 (I).
Multichannel Buffered Serial Port 1 (McBSP1)
For more details on pin multiplexing, see Section 3.7 ,Multiplexed Pin Configurations.
CLKS1/TINP0L/ IPD This pin is multiplexed between McBSP1, Timer0, and GPIO.K2 L2 I/O/ZGP[98] DV
DD33
For McBSP1, it is McBSP1 external clock source (I).
ACLKX0/CLKX1/ IPD This pin is multiplexed between McASP0, McBSP1, and GPIO.F1 G1 I/O/ZGP[106] DV
DD33
For McBSP1, it is McBSP1 transmit clock CLKX1 (I/O/Z).
AHCLKX0/CLKR1/ IPD This pin is multiplexed between McASP0, McBSP1, and GPIO.G1 H1 I/O/ZGP[108] DV
DD33
For McBSP1, it is McBSP1 receive clock CLKR1 (I/O/Z).
This pin is multiplexed between McASP0, McBSP1, and GPIO.AMUTEIN0/FSX1/ IPDF2 G3 I/O/Z For McBSP1, it is McBSP1 transmit frame synchronization FSX1GP[109] DV
DD33
(I/O/Z).
This pin is multiplexed between McASP0, McBSP1, and GPIO.AXR0[0]/FSR1/ IPDH2 H2 I/O/Z For McBSP1, it is McBSP1 receive frame synchronization FSR1GP[105] DV
DD33
(I/O/Z).
AFSX0/DX1/ IPD This pin is multiplexed between McASP0, McBSP1, and GPIO.G2 G2 I/O/ZGP[107] DV
DD33
For McBSP1, it is McBSP1 data transmit output DX1 (O/Z).
AMUTE0/DR1/ IPD This pin is multiplexed between McASP0, McBSP1, and GPIO.G3 H3 I/O/ZGP[110] DV
DD33
For McBSP1, it is McBSP1 data receive input DR1 (I).
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview58 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-24. Multichannel Audio Serial Port (McASP0) Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
McASP0
AMUTEIN0/FSX1/ IPD This pin is multiplexed between McASP0, McBSP1, and GPIO.F2 G3 I/O/ZGP[109] DV
DD33
For McASP0, it is McASP0 mute input AMUTEIN0 (I).
AMUTE0/DR1/ IPD This pin is multiplexed between McASP0, McBSP1, and GPIO.G3 H3 I/O/ZGP[110] DV
DD33
For McASP0, it is McASP0 mute output AMUTE0 (O/Z).
ACLKR0/CLKX0/ IPD This pin is multiplexed between McASP0, McBSP0, and GPIO.H1 J1 I/O/ZGP[99] DV
DD33
For McASP0, it is McASP0 receive bit clock ACLKR0 (I/O/Z).
This pin is multiplexed between McASP0, McBSP0, and GPIO.AHCLKR0/CLKR0/ IPDJ2 K1 I/O/Z For McASP0, it is McASP0 receive high-frequency master clockGP[101] DV
DD33
AHCLKR0 (I/O/Z).
ACLKX0/CLKX1/ IPD This pin is multiplexed between McASP0, McBSP1, and GPIO.F1 G1 I/O/ZGP[106] DV
DD33
For McASP0, it is McASP0 transmit bit clock ACLKX0 (I/O/Z).
This pin is multiplexed between McASP0, McBSP1, and GPIO.AHCLKX0/CLKR1/ IPDG1 H1 I/O/Z For McASP0, it is McASP0 transmit high-frequency master clockGP[108] DV
DD33
AHCLKX0 (I/O/Z).
This pin is multiplexed between McASP0, McBSP0, and GPIO.AFSR0/DR0/ IPDH4 K3 I/O/Z For McASP0, it is McASP0 receive frame synchronization AFSR0GP[100] DV
DD33
(I/O/Z).
This pin is multiplexed between McASP0, McBSP1, and GPIO.AFSX0/DX1/ IPDG2 G2 I/O/Z For McASP0, it is McASP0 transmit frame synchronization AFSX0GP[107] DV
DD33
(I/O/Z).
This pin is multiplexed between McASP0, McBSP0, and GPIO.AXR0[3]/FSR0/ IPDG4 J3 I/O/Z For McASP0, it is McASP0 transmit/receive (TX/RX) data pin 3GP[102] DV
DD33
AXR0[3] (I/O/Z).
This pin is multiplexed between McASP0, McBSP0, and GPIO.AXR0[2]/FSX0/ IPDH3 J2 I/O/Z For McASP0, it is McASP0 transmit/receive (TX/RX) data pin 2GP[103] DV
DD33
AXR0[2] (I/O/Z).
This pin is multiplexed between McASP0, McBSP0, and GPIO.AXR0[1]/DX0/ IPDJ3 K2 I/O/Z For McASP0, it is McASP0 transmit/receive (TX/RX) data pin 1GP[104] DV
DD33
AXR0[1] (I/O/Z).
This pin is multiplexed between McASP0, McBSP1, and GPIO.AXR0[0]/FSR1/ IPDH2 H2 I/O/Z For McASP0, it is McASP0 transmit/receive (TX/RX) data pin 0GP[105] DV
DD33
AXR0[0] (I/O/Z).
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 59
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-25. High-End Controller Area Network (HECC)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
HECC
HECC_RX/
TINP1L/ IPU This pin is multiplexed between HECC, Timer 1, UART1, and GPIO.L4 P3 I/O/ZURXD1/ DV
DD33
For HECC, this pin is HECC receive serial data HECC_RX ( I).GP[56]
HECC_TX/
TOUT1L/ IPU This pin is multiplexed between HECC, Timer 1, UART1, and GPIO.K4 N3 I/O/ZUTXD1/ DV
DD33
For HECC, this pin is HECC transmit serial data HECC_TX ( O/Z).GP[55]
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview60 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-26. UART0 and UART1 Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
UART1
HECC_RX/
This pin is multiplexed between the HECC, Timer 1, UART1 (Data),TINP1L/ IPUL4 P3 I/O/Z and GPIO.URXD1/ DV
DD33
Fo UART1 this pin is the receive data input URXD1.GP[56]
HECC_TX/
This pin is multiplexed between the HECC, Timer 1, UART1 (Data),TOUT1L/ IPUK4 N3 I/O/Z and GPIO.UTXD1/ DV
DD33
Fo UART1 this pin is the transmit data output UTXD1.GP[55]
UART0
URXD0/ IPU This pin is multiplexed between UART0 (Data) and GPIO.L2 M2 I/O/ZGP[85] DV
DD33
When used by UART0 this pin is the receive data input URXD0.
UTXD0/ IPU This pin is multiplexed between UART0 (Data) and GPIO.K3 N1 I/O/ZGP[86] DV
DD33
In UART0 mode, this pin is the transmit data output UTXD0.
UCTS0 IPU This pin is multiplexed between the UART0 (Flow Control) and GPIO.L1 P1 I/O/ZGP[87] DV
DD33
In UART0 mode, this pin is the clear to send input UCTS0.
URTS0 This pin is multiplexed between the UART0 (Flow Control), PWM0,IPUPWM0 L3 M3 I/O/Z and GPIO.DV
DD33GP[88] In UART0 mode, this pin is the ready to send output URTS0.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 61
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-27. PWM0, PWM1, and PWM2 Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
PWM2
This pin is multiplexed between the System Clock generator (PLL1),CLKOUT0/PWM2/ IPDM1 R1 I/O/Z PWM2, and GPIO.GP[84] DV
DD33
For PWM2, this pin is output PWM2.
PWM1
IPD This pin is multiplexed between GPIO and PWM1.GP[4]/PWM1 F3 F3 I/O/Z
DV
DD33
For PWM1, this pin is output PWM1.
PWM0
This pin is multiplexed between the UART0 (Flow Control), PWM0,URTS0/PWM0/ IPUL3 M3 I/O/Z and GPIO.GP[88] DV
DD33
For PWM0, this pin is output PWM0.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview62 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-28. Timer 0, Timer 1, and Timer 2 Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
Timer 2
No external pins. The Timer 2 (watchdog) peripheral pins are not pinned out as external pins.
Timer 1
HECC_RX/ This pin is multiplexed between the HECC, Timer 1, UART1 (Data),TINP1L/ IPU and GPIO.L4 P3 I/O/ZURXD1/ DV
DD33
For Timer 1, this pin is the timer 1 input pin for the lower 32-bitGP[56] counter
HECC_TX/ This pin is multiplexed between the HECC, Timer 1, UART1, andTOUT1L/ IPU GPIO.K4 N3 I/O/ZUTXD1/ DV
DD33
For Timer 1, this pin is the timer 1 output pin for the lower 32-bitGP[55] counter
Timer 0
CLKS1/ This pin is multiplexed between the McBSP1, Timer 0, and GPIO.IPDTINP0L/ K2 L2 I/O/Z For Timer 0, this pin is the timer 0 input pin for the lower 32-bitDV
DD33GP[98] counter
CLKS0/ This pin is multiplexed between the McBSP0, Timer 0, and GPIO.IPDTOUT0L/ J4 L3 I/O/Z For Timer 0, this pin is the timer 0 output pin for the lower 32-bitDV
DD33GP[97] counter
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 63
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-29. GPIO Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
GPIO
The 111 GPIO pins on the DM6437 device are multiplexed with other peripherals pin functions (e.g., VPBE, VPFE, PCI, HPI, VLYNQ,EMAC/MDIO, McASP0, McBSP0, McBSP1, Timer 0, Timer 1, UART0, UART1, PWM0, PWM1, PWM2, EMIFA, and the CLKOUT0 pin), seethe peripheral-specific Terminal Functions tables for the GPIO multiplexing.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Device Overview64 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-30. Reserved Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTIONZWT ZDUNAME
NO. NO.
RESERVED
RSV1 E5 D4 Reserved. (Leave unconnected, do not connect to power or ground)
RSV2 K5 L4 Reserved. (Leave unconnected, do not connect to power or ground)
RSV3 L5 M4 Reserved. (Leave unconnected, do not connect to power or ground)
RSV4 L15 P19 A O Reserved. (Leave unconnected, do not connect to power or ground)
RSV5 R13 W16 A O Reserved. (Leave unconnected, do not connect to power or ground)
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal(2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where externalpullup/pulldown resistors are required, see Section 3.9.1 ,Pullup/Pulldown Resistors.(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 65
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-31. Supply Terminal Functions
SIGNAL
TYPE
(1)
OTHER DESCRIPTIONZWT ZDUNAME
NO. NO.
SUPPLY VOLTAGE PINS
A1 A2
A2 A21
A18 B1
E6 D6
E8 D8
F5 D10
F7 D16
F9 D18
F11 E3
F13 E5
G6 E7
G8 E9
G10 E11
G12 E13
G14 E15
H5 E17
H18 E19
J1 F4
J6 F18
J14 G5
3.3 V I/O supply voltageDV
DD33
S
(see the Power-Supply Decoupling section of this data manual)J16 G19
K15 H4
K17 H18
L6 J5
M5 J19
M15 K4
N6 K18
P1 L1
L5
L21
M18
M20
N5
N19
P4
P18
P20
P22
R5
T4
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal
Device Overview66 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-31. Supply Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER DESCRIPTIONZWT ZDUNAME
NO. NO.
L14 U5
P5 V1
P7 V4
P9 V6
P11 V8
P13 V10
R4 V12
R6 V14
R8 V16
1.8 V DDR2 I/O supply voltageDV
DDR2
S
(see the Power-Supply Decoupling section of this data manual)R10 V18
R12 W7
R14 W9
R16 W11
T5 W17
V1 W19
W18 AA1
W19 AB21
AB22
H7 J10
H9 J11
H11 J12
H13 J13
J8 K9
J10 K14
J12 L9
K7 L13
K9 L14
K11 M9
1.20 V supply voltage (-7/-6/-5/-4/-L/-Q6/-Q5/-Q4 devices)CV
DD
K13 M10 S 1.05 V core supply voltage (-7/-6/-5/-4/-L/-Q5 devices)(see the Power-Supply Decoupling section of this data manual)L8 M14
L10 N9
L12 N14
M7 P10
M9 P11
M11 P12
M13 P13
N8
N10
N12
Submit Documentation Feedback Device Overview 67
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 2-32. Ground Terminal Functions
SIGNAL
TYPE
(1)
OTHER DESCRIPTIONZWT ZDUNAME
NO. NO.
GROUND PINS
A19 A1
B1 A22
B19 B22
E7 D5
E9 D7
E13 D9
F4 D11
F6 D15
F8 D17
F10 E4
F12 E6
F14 E8
G5 E10
G7 E12
G9 E14
G11 E16
G13 E18
G18 F5
H6 F19
V
SS
H8 G4 GND Ground pins
H10 G18
H12 H5
H14 H19
H19 J4
J5 J9
J7 J14
J9 J18
J11 K5
J13 K10
J15 K11
J17 K12
J18 K13
K1 L10
K6 L11
K8 L12
K10 L18
K12 L22
K14 M1
K16 M5
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal
68 Device Overview Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 2-32. Ground Terminal Functions (continued)
SIGNAL
TYPE
(1)
OTHER DESCRIPTIONZWT ZDUNAME
NO. NO.
L7 M11
L9 M12
L11 M13
L13 M19
L17 N4
L19 N10
M6 N11
M8 N12
M10 N13
M12 N18
M14 P5
M16 P9
M17 P14
M18 P21
M19 R4
N5 R18
N7 R19
N9 R20
N11 R21
N13 R22
N14 T5
V
SS
P6 T18 GND Ground pins
P8 U4
P10 U18
P12 U19
P14 V5
R1 V7
R5 V9
R7 V11
R9 V13
R11 V15
R15 V17
R17 V19
R18 W1
R19 W6
V19 W8
W1 W10
W2 W20
W21
W22
AA22
AB1
AB2
Submit Documentation Feedback Device Overview 69
l TEXAS INSTRUMENTS
2.7 Device Support
2.7.1 Development Support
2.8 Device and Development-Support Tool Nomenclature
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
TI offers an extensive line of development tools for the TMS320DM643x DMP platform, including tools toevaluate the performance of the processors, generate code, develop algorithm implementations, and fullyintegrate and debug software and hardware modules. The tool's support documentation is electronicallyavailable within the Code Composer Studio™ Integrated Development Environment (IDE).
The following products support development of TMS320DM643x DMP-based applications:
Software Development Tools:
Code Composer Studio™ Integrated Development Environment (IDE): including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time targetsoftware needed to support any SoC application.
Hardware Development Tools:
Extended Development System (XDS™) Emulator (supports TMS320DM643x DMP multiprocessorsystem debug) EVM (Evaluation Module)
For a complete listing of development-support tools for the TMS320DM643x DMP platform, visit theTexas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator(URL). For information on pricing and availability, contact the nearest TI field sales office or authorizeddistributor.
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of allDSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,TMP, or TMS (e.g., TMS320DM6437ZWTQ6). Texas Instruments recommends two of three possibleprefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages ofproduct development from engineering prototypes (TMX/TMDX) through fully qualified productiondevices/tools (TMS/TMDS).
Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device's electricalspecifications.
TMP Final silicon die that conforms to the device's electrical specifications but has not completedquality and reliability verification.
TMS Fully-qualified production device.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internalqualification testing.
TMDS Fully qualified development-support product.
TMX and TMP devices and TMDX development-support tools are shipped against the followingdisclaimer:
"Developmental product is intended for internal evaluation purposes."
TMS devices and TMDS development-support tools have been characterized fully, and the quality andreliability of the device have been demonstrated fully. TI's standard warranty applies.
Device Overview70 Submit Documentation Feedback
l TEXAS INSTRUMENTS l;
C64x+™ DSP:
DM6437
DM6435
DM6433
DM6431
PREFIX
TMS 320 DM6437 ZWT
TMX=Experimentaldevice
TMS=Qualifieddevice
DEVICEFAMILY
320= TMS320™ DSP Family
PACKAGE TYPE(A)
ZWT =361-pinplasticBGA,withPb-Freesolderedballs
ZDU=376-pinplasticBGA,withPb-Freesolderedballs[Green]
DEVICE
A.BGA =BallGrid Array
B.For “TMX” initialdevices,thedevicenumberisDM6437.
C.Notallcombinationsareavailable.Formoreinformation,seethe tableinthePackingInformationsection.
D. ThemaximumCPUfrequencyforthe-Q6deviceis660MHz.Seethe sectionformaximumoperating
frequenciesofthePLL1controller.
OrderableDevices
PLL1andPLL2
E. ThedevicespeedrangesymbolizationindicatesthemaximumCPUfrequencywhenthecorevoltage(CV )issetto1.2V.
TodeterminethemaximumCPUfrequencythecorevoltageissetto1.05V,refertothe section.
DD
PLL1andPLL2
DEVICESPEEDRANGE
()
4=400MHz
5=500MHz
6=600MHz
7=700MHz
L =LowPowerDevice
(D)
TEMPERATURERANGE(JUNCTION)
()()
SILICONREVISION:
Blank=Revision1.3
Blank =0°Cto90°C,CommercialGrade
Q =-40°Cto125°C, AutomotiveGrade
R = 0°Cto90°C,CommercialGrade(TapeandReel)
S =-40°Cto125°C, AutomotiveGrade(TapeandReel)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standardproduction devices. Texas Instruments recommends that these devices not be used in any productionsystem because their expected end-use failure rate still is undefined. Only qualified production devices areto be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates thepackage type (for example, ZWT), the temperature range (for example, "Blank" is the commercialtemperature range), and the device speed range in megahertz (for example, "6" indicates [600-MHz]).
Figure 2-10 provides a legend for reading the complete device name for any TMS320DM643x DMPplatform member.
Figure 2-10. Device Nomenclature
Submit Documentation Feedback Device Overview 71
l TEXAS INSTRUMENTS SPRU978 SPRU983 SPRAA84 SPRU732 SPRUS71
2.9 Documentation Support
2.9.1 Related Documentation From Texas Instruments
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The following documents describe the TMS320DM643x Digital Media Processor (DMP). Copies of thesedocuments are available on the Internet at www.ti.com .Tip: Enter the literature number in the search boxprovided at www.ti.com.
The current documentation that describes the DM643x DMP, related peripherals, and other technicalcollateral, is available in the C6000 DSP product folder at: www.ti.com/c6000 .
SPRU978 TMS320DM643x DMP DSP Subsystem Reference Guide. Describes the digital signalprocessor (DSP) subsystem in the TMS320DM643x Digital Media Processor (DMP).
SPRU983 TMS320DM643x DMP Peripherals Overview Reference Guide. Provides an overview andbriefly describes the peripherals available on the TMS320DM643x Digital Media Processor(DMP).
SPRAA84 TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the TexasInstruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. Theobjective of this document is to indicate differences between the two cores. Functionality inthe devices that is identical is not included.
SPRU732 TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPUarchitecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+digital signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSPgeneration comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is anenhancement of the C64x DSP with added functionality and an expanded instruction set.
SPRU871 TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digitalsignal processor (DSP) megamodule. Included is a discussion on the internal direct memoryaccess (IDMA) controller, the interrupt controller, the power-down controller, memoryprotection, bandwidth management, and the memory and cache.
Device Overview72 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3 Device Configurations
3.1 System Module Registers
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The system module includes status and control registers required for configuration of the device. Briefdescriptions of the various registers are shown in Table 3-1 . System Module registers required for deviceconfigurations are discussed in the following sections.
Table 3-1. System Module Register Memory Map
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C4 0000 PINMUX0 Pin Multiplexing Control 0 (see Section 3.7.2.1 ,PINMUX0 RegisterDescription).
0x01C4 0004 PINMUX1 Pin Multiplexing Control 1 (see Section 3.7.2.2 ,PINMUX1 RegisterDescription).
0x01C4 0008 DSPBOOTADDR DSP Boot Address (see Section 3.4.2.3 ,DSPBOOTADDR Register).
0x01C4 000C BOOTCMPLT Boot Complete (see Section 3.4.2.2 ,BOOTCMPLT Register).
0x01C4 0010 Reserved
0x01C4 0014 BOOTCFG Device Boot Configuration (see Section 3.4.2.1 ,BOOTCFG Register).
0x01C4 0018 - 0x01C4 0027 Reserved
0x01C4 0028 JTAGID JTAG ID (see Section 6.24.1 ,JTAG ID (JTAGID) RegisterDescription(s)).
0x01C4 002C Reserved
0x01C4 0030 HPICTL HPI Control (see Section 3.6.2.1 ,HPI Control Register).
0x01C4 0034 Reserved
0x01C4 0038 Reserved
0x01C4 003C MSTPRI0 Bus Master Priority Control 0 (see Section 3.6.1 ,Switch CentralResource (SCR) Bus Priorities).
0x01C4 0040 MSTPRI1 Bus Master Priority Control 1 (see Section 3.6.1 ,Switch CentralResource (SCR) Bus Priorities).
0x01C4 0044 VPSS_CLKCTL VPSS Clock Control (see Section 3.3.2 ,VPSS Clocks).
0x01C4 0048 VDD3P3V_PWDN V
DD
3.3-V I/O Powerdown Control (see Section 3.2 ,PowerConsiderations).
0x01C4 004C DDRVTPER DDR2 VTP Enable Register (see Section 6.9.4 ,DDR2 MemoryController).
0x01C4 0050 - 0x01C4 0080 Reserved
0x01C4 0084 TIMERCTL Timer Control (see Section 3.6.2.2 ,Timer Control Register).
0x01C4 0088 EDMATCCFG EDMA Transfer Controller Default Burst Size Configuration (seeSection 3.6.2.3 ,EDMA TC Configuration Register).
0x01C4 008C Reserved
Submit Documentation Feedback Device Configurations 73
l TEXAS INSTRUMENTS SPRU978 SPRUQSS
3.2 Power Considerations
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The DM6437 provides several means of managing power consumption.
As described in the Section 6.3.4 ,DM6437 Power and Clock Domains, the DM6437 has one single powerdomain—the “Always On” power domain. Within this power domain, the DM6437 utilizes local clock gatingvia the Power and Sleep Controller (PSC) to achieve power savings. For more details on the PSC, seeSection 6.3.5 ,Power and Sleep Controller (PSC) and the TMS320DM643x DMP DSP SubsystemReference Guide (literature number SPRU978 ).
Some of the DM6437 peripherals support additional power saving features. For more details on powersaving features supported, see the peripheral-specific reference guides [listed/linked in theTMS320DM643x DMP Peripherals Overview Reference Guide (literature number SPRU983 ).
Most DM6437 3.3-V I/Os can be powered-down to reduce power consumption. The VDD3P3V_PWDNregister in the System Module (see Figure 3-1 ) is used to selectively power down unused 3.3-V I/O pins.For independent control, the 3.3-V I/Os are separated into functional groups—most of which are namedaccording to the pin multiplexing groups (see Table 3-2 ). For these I/O groups, only the I/O buffers neededfor Host/EMIFA Boot or Power-Up Operations are powered up by default (CLKOUT Block, EMIFA/VPSSBlock, Host Block, PCI Data Block, and GPIO Block).
Note: To save power, all other I/O buffers are powered down by default. Before using these pins, the usermust program the VDD3P3V_PWDN register to power up the corresponding I/O buffers.
For a list of multiplexed pins on the device and the pin mux group each pin belongs to, seeSection 3.7.3.1 ,Multiplexed Pins on DM6437.
Note: The VDD3P3V_PWDN register only controls the power to the I/O buffers. The Power and SleepController (PSC) determines the clock/power state of the peripheral.
31 16
RESERVED
R-0000 0000 0000 0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED PCIDAT EMBK3 UR0FC UR0DAT TIMER1 TIMER0 SP PWM1 GPIO HOST EMBK2 EMBK1 EMBK0 CLKOUT
R-00 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R/W = Read/Write; R = Read only; - n= value after reset
Figure 3-1. VDD3P3V_PWDN Register— 0x01C4 0048
Device Configurations74 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-2. VDD3P3V_PWDN Register Descriptions
(1)
BIT NAME DESCRIPTION
31:14 RESERVED Reserved. Read-only, writes have no effect.
PCI Data Block I/O Power Down Control.Controls the power of the 3 I/O pins in the PCI Data Block.13 PCIDAT
0 = I/O pins powered up [ default].
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z).
EMIFA/VPSS Sub-Block 3 I/O Power Down Control.Controls the power of the 8 I/O pins in the EMIFA/VPSS Sub-Block 3.12 EMBK3
0 = I/O pins powered up [ default].
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z).
UART0 Flow Control Block I/O Power Down Control.Controls the power of the 2 I/O pins in the UART0 Flow Control Block.11 UR0FC
0 = I/O pins powered up.
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z) [ default].
UART0 Data Block I/O Power Down Control.Controls the power of the 2 I/O pins in the UART0 Data Block.10 UR0DAT
0 = I/O pins powered up.
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z) [ default].
Timer1 Block I/O Power Down Control.Controls the power of the 2 I/O pins in the Timer1 Block.9 TIMER1
0 = I/O pins powered up.
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z) [ default].
Timer0 Block I/O Power Down Control.Controls the power of the 2 I/O pins in the Timer0 Block.8 TIMER0
0 = I/O pins powered up.
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z) [ default].
Serial Port Block I/O Power Down Control.Controls the power of the 12 I/O pins in the Serial Port Block (Serial Port Sub-Block 0 andSerial Port Sub-Block 1).7 SP
0 = I/O pins powered up.
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z) [ default].
PWM1 Block I/O Power Down Control.Contros thel power of the 1 I/O pin in the PWM1 Block.6 PWM1
0 = I/O pins powered up.
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z) [ default].
GPIO Block I/O Power Down Control.Controls the power of the 4 I/O pins in the GPIO Block.5 GPIO
0 = I/O pins powered up [ default].
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z).
Host Block I/O Power Down Control.Controls the power of the 27 I/O pins in the Host Block.4 HOST
0 = I/O pins powered up [ default].
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z).
EMIFA/VPSS Sub-Block 2 I/O Power Down Control.Controls the power of the 3 I/O pins in the EMIFA/VPSS Sub-Block 2.3 EMBK2
0 = I/O pins powered up [ default].
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z).
(1) For more details on I/O pins belonging to each pin mux block, see Section 3.7 ,Multiplexed Pin Configurations.
Submit Documentation Feedback Device Configurations 75
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-2. VDD3P3V_PWDN Register Descriptions (continued)
BIT NAME DESCRIPTION
EMIFA/VPSS Sub-Block 1 I/O Power Down Control.Controls the power of the 29 I/O pins in the EMIFA/VPSS Sub-Block 1.2 EMBK1
0 = I/O pins powered up [ default].
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z).
EMIFA/VPSS Sub-Block 0 I/O Power Down Control.Controls the power of the 21 I/O pins in the EMIFA/VPSS Sub-Block 0.1 EMBK0
0 = I/O pins powered up [ default].
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z).
CLKOUT Block I/O Power Down Control.Controls the power of the 1 I/O pin in the CLKOUT Block.0 CLKOUT
0 = I/O pins powered up [ default].
1 = I/O pins powered down and not operational. Outputs are 3-stated ( Hi-Z).
Device Configurations76 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRUQBS SPRU978
3.3 Clock Considerations
3.3.1 Clock Configurations after Device Reset
3.3.1.1 Device Clock Frequency
3.3.1.2 Module Clock State
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Global device and local peripheral clocks are controlled by the PLL Controllers (PLLC1 and PLLC2) andthe Power and Sleep Controller (PSC). In addition, the System Module VPSS_CLKCTL register configuresthe clock source to the Video Processing Subsystem (VPSS).
After device reset, the user is responsible for programming the PLL Controllers (PLLC1 and PLLC2) andthe Power and Sleep Controller (PSC) to bring the device up to the desired clock frequency and thedesired peripheral clock state (clock gating or not).
For additional power savings, some of the DM6437 peripherals support clock gating within the peripheralboundary. For more details on clock gating and power saving features supported by a specific peripheral,see the peripheral-specific reference guides [listed/linked in the TMS320DM643x DMP PeripheralsOverview Reference Guide (literature number SPRU983 )].
The DM6437 defaults to PLL bypass mode. To bring the device up to the desired clock frequency, theuser should program PLLC1 and PLLC2 after device reset.
DM6437 supports a FASTBOOT option, where upon exit from device reset the internal bootloader codeautomatically programs the PLLC1 into PLL mode with a specific PLL multiplier and divider to speed updevice boot. While the FASTBOOT option is beneficial for faster boot, the PLL multiplier and dividerselected for boot may not be the exact frequency desired for the run-time application. It is the user'sresponsibility to reconfigure PLLC1 after fastboot to bring the device into the desired clock frequency.Section 3.4.1 ,Boot Modes discusses the different fast boot modes in more detail.
The user must adhere to the various clock requirements when programming the PLLC1 and PLLC2:Fixed frequency ratio requirements between CLKDIV1, CLKDIV3, and CLKDIV6 clock domains. Formore details on the frequency ratio requirements, see Section 6.3.4 ,DM6437 Power and ClockDomains.
PLL multiplier and frequency ranges. For more details on PLL multiplier and frequency ranges, seeSection 6.7.1 ,PLL1 and PLL2.
The clock and reset state for each of the modules is controlled by the Power and Sleep Controller (PSC).Table 3-3 shows the default state of each module after a device-level global reset. The DM6437 devicehas four different module states—Enable, Disable, SyncReset, or SwRstDisable. For more information onthe definitions of the module states, the PSC, and PSC programming, see Section 6.3.5 ,Power and SleepController (PSC) and the TMS320DM643x DMP DSP Subsystem Reference Guide (literature numberSPRU978 ).
Submit Documentation Feedback Device Configurations 77
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-3. DM6437 Default Module States
DEFAULT MODULE STATELPSC # MODULE NAME
[PSC Register MDSTATn.STATE]
0 VPSS (Master) SwRstDisable
1 VPSS (Slave) SwRstDisable
2 EDMACC SwRstDisable
3 EDMATC0 SwRstDisable
4 EDMATC1 SwRstDisable
5 EDMATC2 SwRstDisable
6 EMAC Memory Controller SwRstDisable
7 MDIO SwRstDisable
8 EMAC SwRstDisable
9 McASP0 SwRstDisable
11 VLYNQ SwRstDisable
12 HPI SwRstDisable
13 DDR2 Memory Contoller SwRstDisable
SwRstDisable, if configuration pins AEM[2:0] = 000b14 EMIFA
Enable, if configuration pins AEM[2:0] = Others [001b, 011b, 100b, and 101b]
15 PCI SwRstDisable
16 McBSP0 SwRstDisable
17 McBSP1 SwRstDisable
18 I2C SwRstDisable
19 UART0 SwRstDisable
20 UART1 SwRstDisable
22 HECC SwRstDisable
23 PWM0 SwRstDisable
24 PWM1 SwRstDisable
25 PWM2 SwRstDisable
26 GPIO SwRstDisable
27 TIMER0 SwRstDisable
28 TIMER1 SwRstDisable
39 C64x+ CPU Enable
Device Configurations78 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU952
3.3.2 VPSS Clocks
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The Video Processing SubSystem (VPSS) clocks are controlled via the VPSS_CLKCTL register. TheVPSS_CLKCTL register format is shown in Figure 3-2 and the bit field descriptions are given in Table 3-4 .
31 16
RESERVED
R-0000 0000 0000 0000
15 543210
DAC VEN PCLKRESERVED MUXSELCLKEN CLKEN INV
R-0000 0000 000 R/W-0 R/W-0 R/W-0 R/W-00
LEGEND: R = Read; W = Write; - n= value after reset
Figure 3-2. VPSS_CLKCTL Register— 0x01C4 0044
Table 3-4. VPSS_CLKCTL Register Description
BIT NAME DESCRIPTION
31:5 RESERVED Reserved. Read-only, writes have no effect.
Video DAC clock enable.4 DACCLKEN 0 = DAC clock disabled [ default].1 = DAC clock enabled.
Video Encoder clock enable.3 VENCLKEN 0 = VENC clock disabled [ default].1 = VENC clock enabled.
PCLK polarity2 PCLKINV 0 = VPSS receives normal PCLK [ default].1 = VPSS receives inverted PCLK.
VPBE (Video Encoder and DAC) clock selection
SETTING VENC CLK DAC CLK
00 [ default] 27 MHz
(a)
27 MHz
(a)
01 54 MHz
(b)
54 MHz
(b)1:0 MUXSEL
(1) (2)
10 VPBECLK Input VPBECLK Input
11 PCLK (or Inverted PCLK) OFF
(a) The 27-MHz clock comes from PLLC1 SYSCLKBP.(b) The 54-MHz clock comes from PLLC2 PLL2_SYSCLK2.
(1) MUXSEL = 00 selects PLLC1 SYSCLKBP as the clock source to the VPBE. The PLLC1 SYSCLKBP is a 27-MHz clock if the followingsettings are true:
a. MXI/CLKIN clock source is 27 MHz.
b. PLLC1 Bypass Divider Register (BPDIV) is left at the default setting of divide-by-1.(2) MUXSEL = 01 selects PLLC2 PLL2_SYSCLK2 as the clock source to the VPBE. The PLLC2 PLL2_SYSCLK2 is a 54-MHz clock if thefollowing settings are true:
a. MXI/CLKIN clock source is 27 MHz.
b. PLLC2 is in PLL Mode with multiplier x20 to generate a PLL output clock of 27 MHz x 20 = 540 MHz.
c. PLLDIV2.RATIO is left at the default setting of divide-by-10 to generate SYSCLK2 = 54 MHz.
For more details on the different methods and software sequence to clock (gate) the VPBE components,see the TMS320DM643x DMP Video Processing Back End (VPBE) User’s Guide (literature numberSPRU952 ).
Submit Documentation Feedback Device Configurations 79
l TEXAS INSTRUMENTS
3.4 Boot Sequence
3.4.1 Boot Modes
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The boot sequence is a process by which the device's memory is loaded with program and data sections,and by which some of the device's internal registers are programmed with predetermined values. The bootsequence is started automatically after each device-level global reset. For more details on device-levelglobal resets, see Section 6.5 ,Reset.
There are several methods by which the memory and register initialization can take place. Each of thesemethods is referred to as a boot mode. The boot mode to be used is selected at reset. For moreinformation on the bootmode selections, see Section 3.4.1 ,Boot Modes.
The device is booted through multiple means—primary bootloaders within internal ROM or EMIFA, andsecondary user bootloaders from peripherals or external memories. Boot modes, pin configurations, andregister configurations required for booting the device, are described in the following subsections.
The DM6437 boot modes are determined by these device boot and configuration pins. For information onhow these pins are sampled at device reset, see Section 6.5.1.2 ,Latching Boot and Configuration Pins.BOOTMODE[3:0]
PCIEN
FASTBOOT
AEM[2:0]
PLLMS[2:0]
Note: The PLLMS[2:0] configuration pins are actually multiplexed with the AEAW[2:0] configuration pins.For more details on the multiplexed AEAW[2:0]/PLLMS[2:0] configuration pins and control, seeSection 3.5.1.2 ,EMIFA Address Width Selects (AEAW[2:0]) and FASTBOOT PLL Multiplier Selects(PLLMS[2:0]).
BOOTMODE[3:0] and PCIEN determine the type of boot (e.g., I2C Boot, EMIFA Boot, HPI Boot, or PCIBoot, etc.). FASTBOOT determines if the PLL is enabled during boot to speed up the boot process.
The combination of AEM[2:0] and PLLMS[2:0] is used by bootloader code to determine the PLL multiplierused during fastboot modes (FASTBOOT = 1).
The DM6437 boot modes are grouped into three categories—Non-Fastboot Modes, Fixed-MultiplierFastboot Modes, and User-Select Multiplier Fastboot Modes.
Non-Fastboot Modes (FASTBOOT = 0): The device operates in default PLL bypass mode duringboot. The Non-Fastboot bootmodes available on the DM6437 are shown in Table 3-5 .Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b): The bootloader code speedsup the device during boot according to the fixed PLL multipliers. The Fixed-Multiplier Fastbootbootmodes available on the DM6437 are shown in Table 3-6 .
Note: The PLLMS[2:0] configurations have no effect on the Fixed-Multiplier Fastboot Modes, as thesepins function as AEAW[2:0] to select the EMIFA address width when AEM[2:0] = 001b.User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b,011b,100b,101b): Thebootloader code speeds up the device during boot. The PLL multiplier is selected by the user via thePLLMS[2:0] pins. The User-Select Multiplier Fastboot bootmodes available on the DM6437 are shownin Table 3-7 .
All other modes not shown in these tables are reserved and invalid settings.
For more information on how these pins are sampled at device reset, see Section 6.5.1.2 ,Latching Bootand Configuration Pins.
Device Configurations80 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRAAGO
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-5. Non-Fastboot Modes (FASTBOOT = 0)
DEVICE BOOT AND
PLLC1 CLOCK SETTING AT BOOTCONFIGURATION PINS
DM6437 DMP DSPBOOTADDRBOOT DESCRIPTION
(1)
DEVICE(Master/Slave) (DEFAULT)
(1)PLL CLKDIV1 DOMAINBOOTMODE[3:0] PCIEN FREQUENCYMODE
(2)
(SYSCLK1 DIVIDER)
(SYSCLK1)
0000 0 or 1 No Boot (Emulation Boot) Master Bypass /1 CLKIN 0x0010 0000
0001 0 or 1 Reserved
0 HPI Boot Slave Bypass /1 CLKIN 0x0010 00000010
1 Reserved
0011 0 or 1 Reserved
EMIFA ROM Direct Boot0100 0 or 1 Master Bypass /1 CLKIN 0x4200 000[PLL Bypass Mode]
I2C Boot0101 0 or 1 Master Bypass /1 CLKIN 0x0010 0000[STANDARD MODE]
(3)
16-bit SPI Boot0110 0 or 1 Master Bypass /1 CLKIN 0x0010 0000[McBSP0]
0111 0 or 1 NAND Flash Boot Master Bypass /1 CLKIN 0x0010 0000
UART Boot without1000 0 or 1 Hardware Flow Control Master Bypass /1 CLKIN 0x0010 0000[UART0]
1001 0 or 1 Reserved
1010 0 or 1 VLYNQ Boot Slave Bypass /1 CLKIN 0x0010 0000
1011 0 or 1 Reserved
1100 0 or 1 Reserved
1101 0 or 1 Reserved
UART Boot with1110 0 or 1 Hardware Flow Control Master Bypass /1 CLKIN 0x0010 0000[UART0]
24-bit SPI Boot1111 0 or 1 Master Bypass /1 CLKIN 0x0010 0000(McBSP0 + GP[97])
(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000 (i.e., all boot modes except the EMIFA ROM Direct Boot,BOOTMODE[3:0] = 0100, FASTBOOT = 0), the bootloader code disables all C64x+ cache (L2, L1P, and L1D) so that upon exit from thebootloader code, all C64x+ memories are configured as all RAM. If cache use is required, the application code must explicitly enable thecache. For more information on the bootloader, see the Using the TMS320DM643x Bootloader Application Report (literature numberSPRAAG0 ).(2) The PLL MODE for Non-Fastboot Modes is fixed as shown in this table; therefore, the PLLMS[2:0] configuration pins have no effect onthe PLL MODE.(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is notavailable for MXI/CLKIN frequencies less than 21 MHz.
Submit Documentation Feedback Device Configurations 81
l TEXAS INSTRUMENTS SPRAAGO
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-6. Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b)
DEVICE BOOT AND
PLLC1 CLOCK SETTING AT BOOTCONFIGURATION PINS
DM6437 DMP DSPBOOTADDRBOOT DESCRIPTION
(1)
DEVICE(Master/Slave) (DEFAULT)
(1)PLL CLKDIV1 DOMAINBOOTMODE[3:0] PCIEN FREQUENCYMODE
(2)
(SYSCLK1 DIVIDER)
(SYSCLK1)
0000 0 or 1 No Boot (Emulation Boot) Master Bypass /1 CLKIN 0x0010 0000
HPI Boot with PLL0 Slave x27 /2 CLKIN x27 / 2 0x0010 0000Multiplier x27 at boot0001
1 Reserved
HPI Boot with PLL0 Slave x20 /2 CLKIN x20 / 2 0x0010 0000Multiplier x20 at boot0010
1 Reserved
HPI Boot with PLL0 Slave x15 /2 CLKIN x15 / 2 0x0010 0000Multiplier x15 at boot0011
1 Reserved
EMIFA ROM FASTBOOT0100 0 or 1 with Application Image Master x20 /2 CLKIN x20 / 2 0x0010 000Script (AIS)
I2C Boot0101 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000[FAST MODE]
(3)
16-bit SPI Boot0110 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000[McBSP0]
0111 0 or 1 NAND Flash Boot Master x20 /2 CLKIN x20 / 2 0x0010 0000
UART Boot without1000 0 or 1 Hardware Flow Control Master x20 /2 CLKIN x20 / 2 0x0010 0000[UART0]
EMIFA ROM FASTBOOT1001 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000without AIS
1010 0 or 1 VLYNQ Boot Slave x20 /2 CLKIN x20 / 2 0x0010 0000
1011 0 or 1 Reserved
1100 0 or 1 Reserved
1101 0 or 1 Reserved
UART Boot with1110 0 or 1 Hardware Flow Control Master x20 /2 CLKIN x20 / 2 0x0010 0000[UART0]
24-bit SPI Boot1111 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000(McBSP0 + GP[97])
(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000, the bootloader code disables all C64x+ cache (L2, L1P, and L1D)so that upon exit from the bootloader code, all C64x+ memories are configured as all RAM. If cache use is required, the applicationcode must explicitly enable the cache. For more information on the bootloader, see the Using the TMS320DM643x BootloaderApplication Report (literature number SPRAAG0 ).(2) The PLL MODE for Fixed-Multiplier Fastboot Modes is fixed as shown in this table; therefore, the PLLMS[2:0] configuration pins have noeffect on the PLL MODE.(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is notavailable for MXI/CLKIN frequencies less than 21 MHz.
82 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRAAGO
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-7. User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b, 011b, 100b, or 101b)
DEVICE BOOT AND
PLLC1 CLOCK SETTING AT BOOTCONFIGURATION PINS
DM6437 DMP DSPBOOTADDRBOOT DESCRIPTION
(1)
DEVICE(Master/Slave) (DEFAULT)
(1)PLL CLKDIV1 DOMAINBOOTMODE[3:0] PCIEN FREQUENCYMODE
(2)
(SYSCLK1 DIVIDER)
(SYSCLK1)
0000 0 or 1 No Boot (Emulation Boot) Master Bypass /1 CLKIN 0x0010 0000
0 Reserved
0001
PCI Boot without Auto1 Slave Table 3-8 /2 Table 3-8 0x0010 0000Initialization
0 HPI Boot Slave Table 3-8 /2 Table 3-8 0x0010 0000
0010
PCI Boot with Auto1 Slave Table 3-8 /2 Table 3-8 0x0010 0000Initialization
0011 0 or 1 Reserved
EMIFA ROM FASTBOOT0100 0 or 1 Master Table 3-8 /2 Table 3-8 0x0010 0000with AIS
I2C Boot0101 0 or 1 Master Table 3-8 /2 Table 3-8 0x0010 0000[FAST MODE]
(3)
16-bit SPI Boot0110 0 or 1 Master Table 3-8 /2 Table 3-8 0x0010 0000[McBSP0]
0111 0 or 1 NAND Flash Boot Master Table 3-8 /2 Table 3-8 0x0010 0000
UART Boot without1000 0 or 1 Hardware Flow Control Master Table 3-8 /2 Table 3-8 0x0010 0000[UART0]
EMIFA ROM FASTBOOT1001 0 or 1 Master Table 3-8 /2 Table 3-8 without AIS
1010 0 or 1 VLYNQ Boot Slave x20 /2 CLKIN x20 / 2 0x0010 0000
1011 0 or 1 Reserved
1100 0 or 1 Reserved
1101 0 or 1 Reserved
UART Boot with1110 0 or 1 Hardware Flow Control Master Table 3-8 /2 Table 3-8 0x0010 0000[UART0]
24-bit SPI Boot1111 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000(McBSP0 + GP[97])
(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000, the bootloader code disables all C64x+ cache (L2, L1P, and L1D)so that upon exit from the bootloader code, all C64x+ memories are configured as all RAM. If cache use is required, the applicationcode must explicitly enable the cache. For more information on the bootloader, see the Using the TMS320DM643x BootloaderApplication Report (literature number SPRAAG0 ).(2) Any supported PLL MODE is available. [See Table 3-8 for supported DM6437 PLL MODE options].(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is notavailable for MXI/CLKIN frequencies less than 21 MHz.
Table 3-8. PLL Multiplier Selection (PLLMS[2:0]) in User-Select Multiplier Fastboot Modes(FASTBOOT = 1; AEM[2:0] = 000b, 011b, 100b, or 101b)
DEVICE BOOT AND
PLLC1 CLOCK SETTING AT BOOTCONFIGURATION PINS
CLKDIV1 DOMAINPLLMS[2:0] PLL MODE DEVICE FREQUENCY (SYSCLK1)(SYSCLK1 DIVIDER)
000 x20 /2 CLKIN x20 / 2
001 x15 /2 CLKIN x15 / 2
010 x16 /2 CLKIN x16 / 2
011 x18 /2 CLKIN x18 / 2
100 x22 /2 CLKIN x22 / 2
101 x25 /2 CLKIN x25 / 2
110 x27 /2 CLKIN x27 / 2
111 x30 /2 CLKIN x30 / 2
Submit Documentation Feedback Device Configurations 83
l TEXAS INSTRUMENTS SPRAAGO SPRAAGO
3.4.1.1 FASTBOOT
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
As shown in Table 3-5 ,Table 3-6 , and Table 3-7 , at device reset the Boot Controller defaults theDSPBOOTADDR to one of two values based on the boot mode selected. In all boot modes, the C64x+ isimmediately released from reset and begins executing from address location indicated inDSPBOOTADDR.
Internal Bootloader ROM (0x0010 0000): For most boot modes, the DSPBOOTADDR defaults to theinternal Bootloader ROM so that the DSP can immediately execute the bootloader code in the internalROM. The bootloader code decodes the captured BOOTMODE, FASTBOOT, PCIEN, default AEM(DAEM), and PLLMS information (in the BOOTCFG register) to determine the proper boot operation.
Note: For all boot modes that default to DSPBOOTADDR = 0x0010 0000, the bootloader codedisables all C64x+ cache (L2, L1P, and L1D) so that upon exit from the bootloader code, all C64x+memories are configured as all RAM. If cache use is required, the application code must explicitlyenable the cache. For more information on boot modes, see Section 3.4.1 ,Boot Modes. For moreinformation on the bootloader, see the Using the TMS320DM643x Bootloader Application Report(literature number SPRAAG0 ).EMIFA Chip Select Space 2 (0x4200 0000): The EMIFA ROM Direct Boot in PLL Bypass Mode(BOOTCFG settings BOOTMODE[3:0] = 0100b, FASTBOOT = 0) is the only exception where theDSPBOOTADDR defaults to the EMIFA Chip Select Space 2. The DSP begins execution directly fromthe external ROM at this EMIFA space.
For more information how the bootloader code handles each boot mode, see Using the TMS320DM643xBootloader Application Report (literature number SPRAAG0 ).
When DM6437 exits pin reset ( RESET or POR released), the PLL Controllers (PLLC1 and PLLC2) defaultto PLL Bypass Mode. This means the PLLs are disabled, and the MXI/CLKIN clock input is driving thechip. All the clock domain divider ratios discussed in Section 6.3.4 ,DM6437 Power and Clock Domains,still apply. For example, assume an MXI/CLKIN frequency of 27 MHz—meaning the internal clock sourcefor EMIFA is at CLKDIV3 domain = 27 MHz/3 = 9 MHz, a very slow clock. In addition, the EMIFA registersare reset to the slowest configuration which translates to very slow peripheral operation/boot.
To optimize boot time, the user should reprogram clock settings via the PLLC as early as possible duringthe boot process. The FASTBOOT pin facilitates this operation by allowing the device to boot at a fasterclock rate.
Except for the EMIFA ROM Direct Boot in PLL Bypass Mode (BOOTCFG settings BOOTMODE[3:0] =0100b, FASTBOOT = 0), all other boot modes default to executing from the Internal Bootloader ROM. Thefirst action that the bootloader code takes is to decode the boot mode. If the FASTBOOT option isselected (BOOTCFG.FASTBOOT = 1), the bootloader software begins by programming the PLLC1(System PLLC) to PLL Mode to give the device a slightly faster operation before fetching code fromexternal devices. The exact PLL multiplier that the bootloader uses is determined by the AEM[2:0] andPLLMS[2:0] settings, as shown in Table 3-6 and Table 3-7 .
Some boot modes must be accompanied with FASTBOOT = 1 so that the corresponding peripheral canrun at a reasonable rate to communicate to the external device(s). This includes PCI boot.
Note: PLLC2 still stays in PLL Bypass Mode, the bootloader does not reconfigure it.
Device Configurations84 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRAAGO
3.4.1.2 Selecting FASTBOOT PLL Multiplier
3.4.1.3 EMIFA Boot Modes
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-6 ,Table 3-7 , and Table 3-8 show the PLL multipliers used by the bootloader code during fastboot(FASTBOOT = 1) and the resulting device frequency. The user is responsible for selecting the bootmodewith the appropriate PLL multiplier for their MXI/CLKIN clock source so that the device speed and PLLfrequency range requirements are met. For the PLLC1 Clock Frequency Ranges, see Table 6-15 ,PLLC1Clock Frequency Ranges in Section 6.7.1 ,PLL1 and PLL2.
The following are guidelines for PLL output frequency and device speed (frequency):PLL Output Frequency: (PLLOUT = CLKIN frequency * boot PLL Multiplier) must stay within thePLLOUT frequency range in Table 6-15 ,PLLC1 Clock Frequency Ranges.Device Frequency: (SYSCLK1) calculated from Table 3-6 and Table 3-7 must not exceed theSYSCLK1 maximum frequency in Table 6-15 ,PLLC1 Clock Frequency Ranges.
For example, for a 600-MHz device with a CLKIN = 27 MHz, in order to stay within the PLLOUTfrequency range and SYSCLK1 maximum frequency from Table 6-15 ,PLLC1 Clock FrequencyRanges, the user must select a boot mode with a PLL1 multiplier between x15 and x22.
As shown in Table 3-5 ,Table 3-6 , and Table 3-7 , there are different types of EMIFA Boot Modes. Thissubsection summarizes these types of EMIFA boot modes. For further detailed information, see the Usingthe TMS320DM643x Bootloader Application Report (literature number SPRAAG0 ).EMIFA ROM Direct Boot in PLL Bypass Mode (FASTBOOT = 0, BOOTMODE[3:0] = 0100b)
The C64x+ fetches the code directly from EMIFA Chip Select 2 Space [ EM_CS2] (address0x4200 0000)
The PLL is in Bypass Mode
EMIFA is configured as Asynchronous EMIF. The user is responsible for ensuring the desirableAsynchronous EMIF pins are available through configuration pins AEM[2:0] and AEAW[2:0].AEM[2:0] must be configured to 001b [8-bit EMIFA (Async) Pinout Mode 1] or 011b [8-bit EMIFA(Async) Pinout Mode 3].EMIFA ROM Fastboot with AIS (FASTBOOT = 1, BOOTMODE[3:0] = 0100b)
The C64x+ begins execution from the internal bootloader ROM at address 0x0010 0000.
The bootloader code programs PLLC1 to PLL Mode to speed up the boot process. The PLLmultiplier value is determined by the AEM[2:0] and PLLMS[2:0] configurations as shown inTable 3-6 and Table 3-7 .
The bootloader code reads code from the EMIFA EM_CS2 space using the application image script(AIS) format.
EMIFA is configured as Asynchronous EMIF. The user is responsible for ensuring the desirableAsynchronous EMIF pins are available through configuration pins AEM[2:0] and AEAW[2:0].AEM[2:0] must be configured to 001b [8-bit EMIFA (Async) Pinout Mode 1] or 011b [8-bit EMIFA(Async) Pinout Mode 3].EMIFA ROM Fastboot without AIS: (FASTBOOT = 1, BOOTMODE[3:0] = 1001b)
The C64x+ begins execution from the internal bootloader ROM at address 0x0010 0000.
The bootloader code programs PLLC1 to PLL Mode to speed up the boot process. The PLLmultiplier value is determined by the AEM[2:0] and PLLMS[2:0] configurations as shown inTable 3-6 and Table 3-7 .
The bootloader code then jumps to the EMIFA EM_CS2 space, at which point the C64x+ fetchesthe code directly from address 0x4200 0000.
EMIFA is configured as Asynchronous EMIF. The user is responsible for ensuring the desirableAsynchronous EMIF pins are available through configuration pins AEM[2:0] and AEAW[2:0].AEM[2:0] must be configured to 001b [8-bit EMIFA (Async) Pinout Mode 1] or 011b [8-bit EMIFA(Async) Pinout Mode 3].NAND Flash Boot: (FASTBOOT = 0 or 1, BOOTMODE[3:0] = 0111b)
Submit Documentation Feedback Device Configurations 85
l TEXAS INSTRUMENTS SPRU991
3.4.1.4 Serial Boot Modes (I2C, UART[UART0], SPI[McBSP0])
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The C64x+ begins execution from the internal bootloader ROM at address 0x0010 0000.
Depending on the FASTBOOT, AEM[2:0], and PLLMS[2:0] settings, the bootloader code mayprogram the PLLC1 to PLL Mode to speed up the boot process. See Table 3-5 ,Table 3-6 , andTable 3-7 .
The bootloader code reads the code from EMIFA (NAND) EM_CS2 (address 0x4200 0000) usingAIS format.
EMIFA is configured in NAND mode. The user is responsible for ensuring the desirableAsynchronous EMIF pins are available through configuration pins AEM[2:0] and AEAW[2:0].AEM[2:0] can be configured to 001b [8-bit EMIFA (Async) Pinout Mode 1], 011b [8-bit EMIFA(Async) Pinout Mode 3], 100b [8-bit EMIFA (NAND) Pinout Mode 4], or 101b [8-bit EMIFA (NAND)Pinout Mode 5].
This subsection discusses how the bootloader configures the clock dividers for the serial boot modes—I2Cboot, UART boot, and SPI boot.
3.4.1.4.1 I2C Boot
If FASTBOOT = 0, then I2C Boot (BOOTMODE = 0101) is performed in Standard-Mode (up-to 100 kbps).If FASTBOOT = 1, then I2C Boot is performed in Fast-Mode (up-to 400 kbps). The actual I2C datatransfer rate is dependent on the MXI/CLKIN frequency.
This is how the bootloader programs the I2C:I2C Boot in Fast-Mode (BOOTMODE[3:0] = 0101b, FASTBOOT = 1)
I2C register settings: ICPSC.IPSC = 2
10
, ICCLKL.ICCL = 8
10
, ICCKH.ICCH = 8
10
Resulting in the following I2C prescaled module clock frequency (internal I2C clock):(CLKIN frequency in MHz) / 3
Resulting in the following I2C serial clock (SCL):SCL frequency (in kHz) = (CLKIN frequency in MHz) / 78 * 1000SCL low pulse duration (in µs) = 39 / (CLKIN frequency in MHz)SCL high pulse duration (in µs) = 39 / (CLKIN frequency in MHz)I2C Boot in Standard-Mode (BOOTMODE[3:0] = 0101b, FASTBOOT = 0)
I2C register settings: ICPSC.IPSC = 2
10
, ICCLKL.ICCL = 45
10
, ICCKH.ICCH = 45
10
Resulting in the following I2C prescaled module clock frequency (internal I2C clock):(CLKIN frequency in MHz) / 3
Resulting in the following I2C serial clock (SCL):SCL frequency (in kHz) = (CLKIN frequency in MHz) / 300 * 1000SCL low pulse duration (in µs) = 150 / (CLKIN frequency in MHz)SCL high pulse duration (in µs) = 150 / (CLKIN frequency in MHz)
Note: The I2C peripheral requires that the prescaled module clock frequency must be between 7 MHzand 12 MHz. Therefore, the I2C boot is only available for MXI/CLKIN frequency between 21 MHz and30 MHz.
For more details on the I2C periperhal configurations and clock requirements, see the TMS320DM643xDMP Inter-Integrated Circuit (I2C) Peripheral User’s Guide (literature number SPRU991 ).
Device Configurations86 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU997
3.4.1.5 Host Boot Modes
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
3.4.1.4.2 UART Boot
For UART Boot (BOOTMODE[3:0] = 1000b or 1110b), the bootloader programs the UART0 peripheral asfollows:
UART0 divisor is set to 15
10
Resulting in this UART0 baud rate in kilobit per second (kbps):
(CLKIN frequency in MHz) * 1000 / (15 * 16)
The user is responsible for ensuring the resulting baud rate is appropriate for the system. The UART0divisor (/15) is optimized for CLKIN frequency between 27 to 29 MHz to stay within 5% of the 115200-bpsbaud rate.
For more details on the UART peripheral configurations and clock generation, see the TMS320DM643xDMP Universal Asynchronous Receiver/Transmitter (UART) User's Guide (literature number SPRU997 ).
3.4.1.4.3 SPI Boot
Both 16-bit address SPI Boot (BOOTMODE = 0110) and 24-bit address SPI boot are performed throughthe McBSP0 peripheral. The bootloader programs the McBSP0 peripheral as follows:McBSP0 register settings: SRGR.CLKGDV = 2
10
Resulting in this SPI serial clock frequency:
(SYSCLK3 frequency in MHz) / 3
SYSCLK3 frequency = SYSCLK1 frequency / 6. SYSCLK1 frequency during boot can be found inTable 3-5 ,Table 3-6 ,Table 3-7 , and/or Table 3-8 based on the boot mode selection.
For example, if BOOTMODE[3:0] = 0110b, FASTBOOT = 1, the MXI/CLKIN frequency = 27 MHz,AEM[2:0] = 000b, PLLMS[2:0] = 100b, the combination of Table 3-7 and Table 3-8 indicates that thedevice frequency (SYSCLK1) is CLKIN x 22 / 2 = 297 MHz. This means SYSCLK3 frequency is297 / 6 = 49.5 MHz, resulting in SPI serial clock frequency of 49.5 / 3 = 16.5 MHz.
The DM6437 supports two types of host boots—PCI Boot or HPI Boot.
The PCI Boot (BOOTMODE[3:0] = 0001b or 0010b, PCIEN = 1) is only available in fastboot(FASTBOOT = 1), as shown in Table 3-6 and Table 3-7 .
The HPI Boot is available in fastboot and non-fastboot, as shown in Table 3-5 ,Table 3-6 , and Table 3-7 .
Note: The HPI HSTROBE inactive pulse duration timing requirement [t
w(HSTBH)
] is dependent on the HPIinternal clock source (SYSCLK3) frequency (see Section 6.13.3 ,HPI Electrical Data/Timing). The externalhost must be aware of the SYSCLK3 frequency during boot to ensure the HSTROBE pulse durationtiming requirement is met.
Submit Documentation Feedback Device Configurations 87
l TEXAS INSTRUMENTS
3.4.2 Bootmode Registers
3.4.2.1 BOOTCFG Register
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The Device Bootmode (see Section 3.4.1 ,Boot Modes) and Configuration pins (see Section 3.5.1 ,Deviceand Peripheral Configurations at Device Reset) latched at reset are captured in the Device BootConfiguration (BOOTCFG) register which is accessible through the System Module. This is a read-onlyregister. The bits show the values latched from the corresponding configuration pins sampled at devicereset. For more information on how these pins are sampled at device reset, see Section 6.5.1.2 ,LatchingBoot and Configuration Pins. For the corresponding device boot and configuration pins, see Table 2-5 ,BOOT Terminal Functions.
31 20 19 18 17 16
RESERVED FASTBOOT RSV DPCIEN RSV
R-0000 0000 0001 R-L R-0 R-L R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSV PLLMS RSV DAEM RESERVED BOOTMODE
R-0 R-LLL R-0 R-LLL R-0000 R-LLLL
LEGEND: R = Read only; L = pin state latched at reset rising edge; - n= value after reset
Figure 3-3. BOOTCFG Register—0x01C4 0014
Device Configurations88 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-9. BOOTCFG Register Description
Bit Field Name Description
31:20 RESERVED Reserved. Writes have no effect.
Fastboot (see Section 3.4.1.1 , FASTBOOT)
This field is used by the device bootloader code to determine if it needs to speed up the device to PLL modebefore booting.19 FASTBOOT
0 = No Fastboot
1 = Fastboot
The default value is latched from FASTBOOT configuration pin.
18 RSV Reserved. Writes have no effect.
PINMUX1.PCIEN Default (see Section 3.5.1.3 ,PCI Enable)For more details on the PCIEN settings, see Section 3.7.2.2 ,PINMUX1 Register Description.
This field affects the pin mux control by setting the default of PINMUX1.PCIEN. This field determines if theinternal pullup/pulldown resistors on the PCI capable pins are enabled/disabled. This field does not affect PCI17 DPCIEN register setting.
The user must keep the value on the PCIEN pin constant throughout the operation.
The default value is from the PCIEN configuration pin.
16:15 RSV Reserved. Writes have no effect.
PINMUX0.AEAW default [AEAW] and Fastboot PLL Multiplier Select [PLLMS] (see Section 3.5.1.2 ,EMIFAAddress Width Select [AEAW] and Fast Boot PLL Multiplier Select [PLLMS])
The AEAW[2:0]/PLLMS configuration pins serve two purposes:AEAW[2:0]: 8-bit EMIFA (Async) Pinout Mode 1 Address WidthIf AEM = 001, this field serves as AEAW and it indicates the 8-bit EMIFA (Async) Pinout Mode 1 AddressWidth. In this case, this field affects pin mux control only by setting the default of Pin Mux Control Register14:12 PLLMS
PINMUX0.AEAW[2:0]. This field does not affect EMIFA register settings.
For more details on the AEAW settings, see Section 3.7.2.1 ,PINMUX0 Register Description.
PLLMS: Fastboot PLL Multiplier SelectIf FASTBOOT = 1 and AEM[2:0] = 000b, 011b, 100b, or 101b, this field selects the FASTBOOT PLL Multiplier.In this case, this field does not affect the pin mux control or the EMIFA register settings. The bootloader codeuses this field to determine the PLL multiplier used for Fastboot.
11 RSV Reserved. Writes have no effect.
PINMUX0.AEM default [DAEM] (see Section 3.5.1.1 ,EMIFA Pinout Mode (AEM[2:0]))
For more details on the AEM settings, see Section 3.7.2.1 ,PINMUX0 Register Description.
10:8 DAEM
This field affects pin mux control by setting the default of PINMUX0.AEM. This field does not affect EMIFARegister settings.
The default value is latched from the AEM[2:0] configuration pins.
7:4 RESERVED Reserved. Writes have no effect.
Boot Mode (see Section 3.4.1 ,Boot Modes)
This field is used in conjunction with FASTBOOT, PCIEN, AEM, and PLLMS to determine the device boot3:0 BOOTMODE
mode.
The default value is latched from the BOOTMODE[3:0] configuration pins.
Submit Documentation Feedback Device Configurations 89
l TEXAS INSTRUMENTS SPRAAGO
3.4.2.2 BOOTCMPLT Register
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
If the bootloader code detects an error during boot, it records the error status in the Boot Complete(BOOTCMPLT) register.
In addition, the BOOTCMPLT register is used for communication between the external host and thebootloader code during a Host Boot (PCI Boot or HPI boot). Once the external host has completed boot, itmust perform the following communication with the bootloader code:Write the desired 32-bit CPU starting address in the DSPBOOTADDR register (see Section 3.4.2.3 ,DSPBOOTADDR Register).Write a ‘1’ to the Boot Complete (BC) bit field in the BOOTCMPLT register to indicate that the host hascompleted booting this device.
Once the bootloader code detects BC = 1, it directs the CPU to begin executing from theDSPBOOTADDR register.
The BOOTCMPLT register is reset by any device-level global reset. For the list of device-level globalresets, see Section 6.5 ,Reset.
31 20 19 16
RESERVED ERR
R/W-0000 0000 0000 R/W-0000
15 1 0
RESERVED BC
R/W- 0000 0000 0000 000 R/W-0
LEGEND: R = Read; W = Write; - n= value after reset
Figure 3-4. BOOTCMPLT Register— 0x01C4 000C
Table 3-10. BOOTCMPLT Register Description
Bit Field Name Description
31:20 RESERVED Reserved. For proper device operation, the user should only write "0" to these bits.
Boot Error0000 = No Error (default).19:16 ERR
0001 - 1111 = bootloader software detected a boot error and aborted the boot. For the error codes, see theUsing the TMS320DM643x DMP Bootloader Application Report (literature number SPRAAG0 ).
15:1 RESERVED Reserved. For proper device operation, the user should only write "0" to these bits.
Boot Complete Flag from HostThis field is only applicable to Host Boots.0 BC 0 = Host has not completed booting this device (default).1 = Host has completed booting this device. DSP can begin executing from the DSPBOOTADDR registervalue.
Device Configurations90 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.4.2.3 DSPBOOTADDR Register
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The DSP Boot Address (DSPBOOTADDR) register contains the starting address for the C64x+ CPU.Whenever the C64x+ is released from reset, it begins executing from the location pointed to byDSPBOOTADDR register. For Host boots (PCI Boot or HPI boot), the DSPBOOTADDR register is alsoused for communication between the Host and the bootloader code during boot.
The DSPBOOTADDR register is reset by any device-level global reset. For the list of device-level globalresets, see Section 6.5 ,Reset.
31 0
DSPBOOTADDR
R/W-0x0010 0000 or 0x4200 00000
LEGEND: R = Read; W = Write; - n= value after reset
Figure 3-5. DSPBOOTADDR Register— 0x01C4 0008
Table 3-11. DSPBOOTADDR Register Description
Bit Field Name Description
DSP Boot Address
After boot, the C64x+ CPU begins execution from this 32-bit address location. The lower 10 bits(bits 9:0) should always be programmed to "0" as they are ignored by the C64x+. The defaultvalue of the DSPBOOTADDR depends on the boot mode selected.
31:0 DSPBOOTADDR The DSPBOOTADDR defaults to 0x0010 0000 when the Internal Bootloader ROM is used.or
The DSPBOOTADDR defaults to 0x4200 0000 when EMIFA CS2 Space is used.
For the boot mode selections, see Table 3-5 ,Non-Fastboot Modes;Table 3-6 ,Fixed-MultiplierFastboot Modes; and Table 3-7 ,User-Select Multiplier Fastboot Modes.
For Non-Host Boot Modes, software can leave the DSPBOOTADDR register at default.
For Host Boots (PCI Boot or HPI boot), the DSPBOOTADDR register is also used for communicationbetween the Host and the bootloader code during boot. For Host Boots, the DSPBOOTADDR registerdefaults to Internal Bootloader ROM, and the C64x+ CPU is immediately released from reset so that it canbegin executing the bootloader code in this internal ROM. The bootloader code waits for the Host to bootthe device. Once the Host is done booting the device, it must write a new starting address into theDSPBOOTADDR register, and follow with writing BOOTCMPLT.BC = 1 to indicate the boot is complete.As soon as the bootloader code detects BOOTCMPLT.BC = 1, it instructs the CPU to jump to this newDSPBOOTADDR address. At this point, the CPU continues the rest of the code execution starting fromthe new DSPBOOTADDR location and the boot is completed.
Submit Documentation Feedback Device Configurations 91
l TEXAS INSTRUMENTS
3.5 Configurations At Reset
3.5.1 Device and Peripheral Configurations at Device Reset
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Some device configurations are determined at reset. The following subsections give more details.
Table 2-5 , BOOT Terminal Functions lists the device boot and configuration pins that are latched at devicereset for configuring basic device settings for proper device operation. Table 3-12 , summarizes the deviceboot and configuration pins, and the device functions that they affect.
Table 3-12. Default Functions Affected by Device Boot and Configuration Pins
DEVICE BOOT AND
BOOT SELECTED PIN MUX CONTROL GLOBAL SETTING PERIPHERAL SETTINGCONFIGURATION PINS
BOOTMODE[3:0] Boot Mode PINMUX0/PINMUX1 I/O Pin Power:PSC/Peripherals:Registers: Based on Based onBased on BOOTMODE[3:0], the BOOTMODE[3:0], theBOOTMODE[3:0], the bootloader code programs bootloader code programsbootloader code programs VDD3P3V_PWDN register the PSC to putPINMUX0 and PINMUX1 to power up the I/O pins boot-related peripheral(s)registers to select the required for boot. in the Enable State, andappropriate pin functions programs the peripheral(s)required for boot. for boot operation.
FASTBOOT Fastboot Sets Device Frequency: –Based on BOOTMODE,
FASTBOOT, PLLMS, andAEM the bootloader codeprograms PLLC1.
AEAW[2:0]/PLLMS[2:0] If FASTBOOT = 1 and PINMUX0.AEAW:Sets Device Frequency: –AEM = 000b, 011b, 100b AEAW[2:0] sets the Based on BOOTMODE,or 101b the PLLMS[2:0] default of this field to FASTBOOT, PLLMS, andselects the FASTBOOT control the EMIFA AEM the bootloader codePLL Multiplier. address bus width ( only programs PLLC1.applicable ifPINMUX0.AEM = 001b).
Affects the pin muxing inEMIFA/VPSS Sub-Block0.
AEM[2:0] Together with FASTBOOT PINMUX0.AEM:Sets Device Frequency:PSC/EMIFA:and PLLMS[2:0] , Sets the default of this Based on BOOTMODE, The EMIFA module statedetermines the field to control the EMIFA FASTBOOT, PLLMS, and defaults to SwRstDisableFASTBOOT PLL Pinout Mode. AEM the bootloader code if AEM = 0; otherwise, theMultiplier. programs PLLC1. EMIFA module stateAffects the pin muxing in
defaults to Enable.EMIFA/VPSS Sub-Block0, 1, and 3.
PCIEN
(1)
Host Boot:PINMUX1.PCIEN: PSC/PeripheralPCIEN selects the type of sets this field to control (Applicable to Host BootHost Boot the PCI pin muxing in only):(HPI Boot or PCI Boot) Host Block, PCI Data Based on the Host BootBlock, GPIO Block, type (PCI or HPI), theEMIFA/VPSS Sub-Block 0 bootloader code programsand Sub-Block 3. the PSC to put the(1) (2)
corresponding peripheralin the Enable State, andprograms the peripheralfor boot operation.
(1) Software can modify all PINMUX0 and PINMUX1 bit fields from their defaults, except for PINMUX1.PCIEN.(2) In addition to pin mux control, PCIEN also affects the internal pullup/down resistors of the PCI capable pins. When PCIEN = 0, internalpullup/down resistors on the PCI capable pins are enabled. When PCIEN = 1, internal pullup/down resistors on the PCI capable pins aredisabled to be compliant to the PCI Local Bus Specification Revision 2.3.
Device Configurations92 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.5.1.1 EMIFA Pinout Mode (AEM[2:0])
3.5.1.2 EMIFA Address Width Select (AEAW) and FASTBOOT PLL Multiplier Select (PLLMS)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
For proper device operation, external pullup/pulldown resistors may be required on these device boot andconfiguration pins. For discussion situations where external pullup/pulldown resistors are required, seeSection 3.9.1 ,Pullup/Pulldown Resistors.
Note: Except for PCIEN, all other DM6437 configuration inputs (BOOTMODE[3:0], FASTBOOT,AEAW[2:0]/PLLMS[2:0] and AEM[2:0]) are multiplexed with other functional pins. These pins function asdevice boot and configuration pins only during device reset. The user must take care of any potential datacontention in the system. To help avoid system data contention, the DM6437 puts these configuration pinsinto a high-impedance state (Hi-Z) when device reset ( RESET or POR) is asserted, and continues to holdthem in a high-impedance state until the internal global reset is removed; at which point, the defaultperipheral (either GPIO or EMIFA based on default of AEM[2:0]) will now control these pins.
All of the device boot and configuration pin settings are captured in the corresponding bit fields in theBOOTCFG register (see Section 3.4.2.1 ).
The following subsections provide more details on the device configurations determined at device reset:AEM, AEAW/PLLMS, and PCIEN.
To support different usage scenarios, the DM6437 provides intricate pin multiplexing between the EMIFAand other peripherals. The PINMUX0.AEM register bit field in the System Module determines the EMIFAPinout Mode. The AEM[2:0] pins only select the default EMIFA Pinout Mode. It is latched at device resetde-assertion (high) into the BOOTCFG.DAEM bit field. The AEM[2:0] value also sets the default of thePINMUX0.AEM bit field. While the BOOTCFG.DAEM bit field shows the actual latched value and cannotbe modified, the PINMUX0.AEM value can be changed by software to modify the EMIFA Pinout Mode.
Note: The AEM[2:0] value does not affect the operation of the EMIFA module itself. It only affects whichEMIFA pins are brought out to the device pins. For more details on the AEM settings, see Section 3.7 ,Multiplexed Pin Configurations.
In addition, for Fastboot modes (FASTBOOT = 1), the bootloader code determines the PLL1 multiplierbased on the default settings of AEM[2:0] and PLLMS[2:0]. For more details, see Section 3.4.1.1 ,Fastboot, and Section 3.5.1.2 ,EMIFA Address Width Select (AEAW) and FASTBOOT PLL MultiplierSelect (PLLMS).
The AEAW[2:0]/PLLMS[2:0] pins serve two functional purposes (AEAW or PLLMS), depending on theFASTBOOT and AEM settings. The AEAW[2:0]/PLLMS[2:0] pins are latched at device reset de-assertion(high) and captured in the BOOTCFG.PLLMS bit field. This value also sets the default of thePINMUX0.AEAW field.
While the BOOTCFG.PLLMS field shows the actual latched value and cannot be modified, thePINMUX0.AEAW value can be changed by software to modify the EMIFA pinout.
AEAW as EMIFA Address Width Select (AEAW)
If AEM[2:0] = 001b [8-bit EMIFA (Async) Pinout Mode 1], the AEAW[2:0]/PLLMS[2:0] pins serve as AEAWto set the default of the EMIFA Address Width Selection.
When EMIFA is used in the 8-bit EMIFA (Async) Pinout Mode 1 (PINMUX0.AEM = 001b), the user has theoption to determine how many address pins are needed. The unused address pins can be used asgeneral-purpose input/output (GPIO) pins or extra data pins for VPFE. For more details on how the AEAWsettings control the exact pin out when AEM = 001b, see Section 3.7.3.13 ,EMIFA/VPSS Block Muxing.For other EMIFA Pinout Modes (AEM not 001b), AEAW is not applicable in determining the EMIFAaddress width.
Note: AEAW[2:0] value does not affect the operation of the EMIFA module itself. It only affects which ofthe EMIFA address bits are brought out to the device pins.
Submit Documentation Feedback Device Configurations 93
l TEXAS INSTRUMENTS
3.5.1.3 PCI Enable (PCIEN)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
AEAW as Fast Boot PLL Multiplier Select (PLLMS)
If FASTBOOT = 1 and AEM[2:0] = 000b [No EMIFA], 011b [8-bit EMIFA (Async) Pinout Mode 3], 100b[8-bit EMIFA (NAND) Pinout Mode 4], or 101b [8-bit EMIFA (NAND) Pinout Mode 5], theAEAW[2:0]/PLLMS[2:0] pins serve as PLLMS to select PLL multiplier for Fastboot modes.
For more information on boot modes and the FASTBOOT PLL multiplier selection, see Section 3.4.1 ,BootModes.
The PCIEN configuration pin determines if the PCI peripheral is used on this device. If PCIEN = 1indicating the PCI is used, then the PCI multiplexed pins default to PCI functions, and the pins’corresponding internal pullup/pulldown resistors are disabled. If PCIEN = 0 indicating the PCI is not used,then the PCI muxed pins default to non-PCI functions, and the pins’ corresponding internalpullup/pulldown resistors are enabled.
The PCIEN setting is captured and stored in the BOOTCFG.DPCIEN bit field, and also in thePINMUX1.PCIEN bit field. These values cannot be changed by software. Furthermore, for proper deviceoperation, the user must hold the desired setting at the PCIEN pin throughout device operation.
94 Device Configurations Submit Documentation Feedback
I TEXAS INSTRUMENTS
3.6 Configurations After Reset
3.6.1 Switch Central Resource (SCR) Bus Priorities
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The following sections provide details on configuring the device after reset.
Multiplexed pins are configured both at and after reset. Section 3.5.1 ,Device and PeripheralConfigurations at Device Reset, discusses multiplexed pin control at reset. For more details on multiplexedpins control after reset, see Section 3.7 , Multiplexed Pin Configurations.
Prioritization within the Switched Central Resource (SCR) is programmable for each master. The registerbit fields and default priority levels for DM6437 bus masters are shown in Table 3-13 ,DM6437 Default BusMaster Priorities. The priority levels should be tuned to obtain the best system performance for a particularapplication. Lower values indicate higher priority. For most masters, their priority values are programmedat the system level by configuring the MSTPRI0 and MSTPRI1 registers. Details on the MSTPRI0/1registers are shown in Figure 3-6 and Figure 3-7 . The C64x+, VPSS, and EDMA masters contain registersthat control their own priority values.
Table 3-13. DM6437 Default Bus Master Priorities
Priority Bit Field Bus Master Default Priority Level
VPSSP VPSS 0 (VPSS PCR Register)
EDMATC0P EDMATC0 0 (EDMACC QUEPRI Register)
EDMATC1P EDMATC1 0 (EDMACC QUEPRI Register)
EDMATC2P EDMATC2 0 (EDMACC QUEPRI Register)
C64X+_DMAP C64X+ (DMA) 7 (C64x + MDMAARBE.PRI field)
C64X+_CFGP C64X+ (CFG) 1 (MSTPRI0 Register)
EMACP EMAC 4 (MSTPRI1 Register)
VLYNQP VLYNQ 4 (MSTPRI1 Register)
HPIP HPI 4 (MSTPRI1 Register)
PCIP PCI 4 (MSTPRI1 Register)
31 16
RESERVED
R-0000 0000 0000 0000
15 11 10 8 7 0
RESERVED C64X+_CFGP RESERVED
R-0000 0 R/W-001 R-0000 0000
LEGEND: R = Read; W = Write; - n= value after reset
Figure 3-6. MSTPRI0 Register— 0x01C4 003C
Table 3-14. MSTPRI0 Register Description
Bit Field Name Description
31:11 RESERVED Reserved. Read-only, writes have no effect.
C64X+_CFG master port priority in System Infrastructure.
000 = Priority 0 ( Highest) 100 = Priority 4
10:8 C64X+_CFGP 001 = Priority 1 101 = Priority 5
010 = Priority 2 110 = Priority 6
011 = Priority 3 111 = Priority 7 ( Lowest)
Submit Documentation Feedback Device Configurations 95
l TEXAS INSTRUMENTS
3.6.2 Peripheral Selection After Device Reset
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-14. MSTPRI0 Register Description (continued)
Bit Field Name Description
7:0 RESERVED Reserved. Read-only, writes have no effect.
31 27 26 25 24 23 22 21 20 19 18 17 16
RESERVED PCIP RSV HPIP RSV VLYNQP
R-0000 0 R/W-100 R-0 R/W-100 R-0 R/W-100
15 3 2 1 0
RESERVED EMACP
R- 0000 0000 0000 0 R/W-100
LEGEND: R = Read; W = Write; - n= value after reset
Figure 3-7. MSTPRI1 Register— 0x01C4 0040
Table 3-15. MSTPRI1 Register Description
Bit Field Name Description
31:27 RESERVED Reserved. Read-only, writes have no effect.
PCI master port priority in System Infrastructure.
000 = Priority 0 ( Highest) 100 = Priority 4
26:24 PCIP 001 = Priority 1 101 = Priority 5
010 = Priority 2 110 = Priority 6
011 = Priority 3 111 = Priority 7 ( Lowest)
23 RSV Reserved. Read-only, writes have no effect.
HPI master port priority in System Infrastructure.
000 = Priority 0 ( Highest) 100 = Priority 4
22:20 HPIP 001 = Priority 1 101 = Priority 5
010 = Priority 2 110 = Priority 6
011 = Priority 3 111 = Priority 7 ( Lowest)
19 RSV Reserved. Read-only, writes have no effect.
VLYNQ master port priority in System Infrastructure.
000 = Priority 0 ( Highest) 100 = Priority 4
18:16 VLYNQP 001 = Priority 1 101 = Priority 5
010 = Priority 2 110 = Priority 6
011 = Priority 3 111 = Priority 7 ( Lowest)
15:3 RESERVED Reserved. Read-only, writes have no effect.
EMAC master port priority in System Infrastructure.
000 = Priority 0 ( Highest) 100 = Priority 4
2:0 EMACP 001 = Priority 1 101 = Priority 5
010 = Priority 2 110 = Priority 6
011 = Priority 3 111 = Priority 7 ( Lowest)
After device reset, most peripheral configurations are done within the peripheral’s registers. This sectiondiscusses some additional peripheral controls in the System Module. For information on multiplexed pincontrols that determine what peripheral pins are brought out to the pins, see Section 3.7 ,Multiplexed PinConfigurations.
Device Configurations96 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU998
3.6.2.1 HPI Control Register (HPICTL)
3.6.2.2 Timer Control Register (TIMERCTL)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The HPI Control (HPICTL) register determines the Host Burst Write Time-Out value. The user shouldonly modify this register once during device initialization. When modifying this register, the usermust ensure the HPI FIFOs are empty and there are no on-going HPI transactions.
31 16
RESERVED
R-0000 0000 0000 0000
15 10 9 8 7 0
RESERVED RESERVED TIMOUT
R- 0000 00 R/W-00 R/W-1000 0000
LEGEND: R = Read; W = Write; - n= value after reset
Figure 3-8. HPICTL Register— 0x01C4 0030
Table 3-16. HPICTL Register Description
Bit Field Name Description
31:10 RESERVED Reserved. Read-only, writes have no effect.
9:8 RESERVED Reserved. For proper device operation, the user should only write "0" to these bits (default).
Host Burst Write Timeout ValueWhen the HPI time-out counter reaches the value programmed here, the HPI write FIFO content is flushed. For7:0 TIMOUT
more details on the time-out counter and its use in write bursting, see the TMS320DM643x DMP Host PortInterface (HPI) User's Guide (literature number SPRU998 ).
The Timer Control Register (TIMERCTL) provides additional control for Timer0 and Timer2. The usershould only modify this register once during device initialization, when the corresponding Timer isnot in use.Timer 2 Control: The TIMERCTL.WDRST bit determines if the WatchDog timer event (Timer 2) cancause a device max reset. For more details on the description of a maximum reset, see Section 6.5.3 ,Maximum Reset.Timer 0 Control: The TINP0SEL bit selects the clock source connected to Timer0's TIN0 input.
31 16
RESERVED
R-0000 0000 0000 0000
15 2 1 0
TINP0 WDRESERVED
SEL RST
R- 0000 0000 0000 00 R/W-0 R/W-1
LEGEND: R = Read; W = Write; - n= value after reset
Figure 3-9. TIMERCTL Register— 0x01C4 0084
Submit Documentation Feedback Device Configurations 97
l TEXAS INSTRUMENTS SPRU987
3.6.2.3 EDMA TC Configuration Register (EDMATCCFG)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-17. TIMERCTL Register Description
Bit Field Name Description
31:2 RESERVED Reserved. Read-Only, writes have no effect.
Timer0 External Input (TIN0) Select0 = Timer0 external input comes directly from the TINP0L pin ( default).1 TINP0SEL
1 = Timer0 external input is TINP0L pin divided by 6. For example, if TINP0L = 27MHz, Timer0 input TIN0 is27MHz / 6 = 4.5 MHz.
WatchDog Reset Enable0 WDRST 0 = WatchDog Timer Event (WDINT from Timer2) does not cause device reset.1 = WatchDog Timer Event (WDINT from Timer2) causes a device max reset ( default).
The EDMA Transfer Controller Configuration (EDMATCCFG) register configures the default burst size(DBS) for EDMA TC0, EDMA TC1, and EDMA TC2. For more information on the correct usage of DBS,see the TMS320DM643x DMP Enhanced Direct Memory Access (EDMA) Controller User's Guide(literature number SPRU987 ). The user should only modify this register once during deviceinitialization and when the corresponding EDMA TC is not in use.
31 16
RESERVED
R-0000 0000 0000 0000
15 6543210
RESERVED TC2DBS TC1DBS TC0DBS
R-0000 0000 00 R/W-10 R/W-01 R/W-00
LEGEND: R = Read; W = Write; - n= value after reset
Figure 3-10. EDMATCCFG Register— 0x01C4 0088
Table 3-18. EDMATCCFG Register Description
Bit Field Description
31:6 RESERVED Reserved. Read-Only, writes have no effect.
EDMA TC2 Default Burst Size00 = 16 byte01 = 32 byte10 = 64 byte ( default)5:4 TC2DBS
11= reserved
EDMA TC2 is intended for PCI or miscellaneous transfers.TC2 FIFO size is 128 bytes, regardless of Default Burst Size setting.
EDMA TC1 Default Burst Size00 = 16 byte01 = 32 byte ( default)10 = 64 byte3:2 TC1DBS
11 = reserved
EDMA TC1 is intended for high throughput bulk transfers.TC1 FIFO size is 256 bytes, regardless of Default Burst Size setting.
EDMA TC0 Default Burst Size00 = 16 byte ( default)01 = 32 byte10 = 64 byte1:0 TC0DBS
11 = reserved
EDMA TC0 is intended for short burst transfers with stringent deadlines (e.g., McBSP, McASP).TC0 FIFO size is 128 bytes, regardless of Default Burst Size setting.
Device Configurations98 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.7 Multiplexed Pin Configurations
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
DM6437 makes extensive use of pin multiplexing to accommodate a large number of peripheral functionsin the smallest possible package, providing ultimate flexibility for end applications.
The Pin Multiplex Registers PINMUX0 and PINMUX1 in the System Module are responsible for controllingall pin multiplexing functions on the DM6437. The default setting of some of the PINMUX0 and PINMUX1bit fields are configured by configuration pins latched at reset (see Section 3.5.1 ,Device and PeripheralConfigurations at Device Reset). After reset, software may program the PINMUX0 and PINMUX1 registersto switch pin functionalities.
The following peripherals have multiplexed pins: VPSS (VPFE/VPBE), EMIFA, PCI, HPI, VLYNQ, EMAC,McASP0, McBSP0, McBSP1, PWM0, PWM1, PWM2, Timer0, Timer1, UART0, UART1, HECC, and GPIO.
The device is divided into the following Pin Multiplexed Blocks (Pin Mux Blocks):EMIFA/VPSS Block: VPSS (VPFE/VPBE), EMIFA, part of PCI, GPIO. This block is further subdividedinto these sub-blocks:
Sub-Block 0: VPFE (CCDC), part of EMIFA (data, address, control), part of PCI, and GPIO
Sub-Block 1: VPBE (VENC), part of EMIFA (data, address, control), and GPIO
Sub-Block 2: part of EMIFA (control signals EM_WAIT/(RDY/ BSY), EM_OE, and EM_WE)
Sub-Block 3: part of EMIFA (address EM_A[12:5]), part of PCI, and GPIOHost Block: HPI, VLYNQ, EMAC, part of PCI, and GPIOPCI Data Block: part of PCIGPIO Block: part of PCI and GPIOSerial Port Block: McBSP0, McBSP1, McASP0, and GPIO. This block is further sub-divided intosub-blocks.
Serial Port Sub-Block 0: McBSP0, part of McASP0, and GPIO
Serial Port Sub-Block 1: McBSP1, part of McASP0, and GPIOUART0 Flow Control Block: UART0 flow control, PWM0, and GPIOUART0 Data Block: UART0 data and GPIOTimer0 Block: Timer0 and McBSP's CLKS pinsTimer1 Block: Timer1 and HECC, UART1 dataPWM1 Block: PWM1 and GPIOCLKOUT Block: CLKOUT0, PWM2, and GPIO
As shown in the list above, the PCI, McBSP0, McBSP1, and UART0 peripherals span multiple Pin MuxBlocks. To use these peripherals, they must be selected in all relevant Pin Mux Blocks. For more details,see Section 3.7.3 ,Pin Multiplexing Details, and Section 3.7.3.2 ,Peripherals Spanning Multiple Pin MuxBlocks.
Note: There is no actual pin multiplexing in EMIFA/VPSS Sub-Block 2 and the PCI Data Block. Howeverthese are still considered "pin mux blocks" because they contain part of the pins necessary for EMIFA andPCI, respectively.
A high level view of the Pin Mux Blocks is shown in Figure 3-11 . In each Pin Mux Block, thePINMUX0/PINMUX1 default settings are underlined.
Note: Some default pin functions are determined by configuration pins (PCIEN, AEAW[2:0], AEM[2:0]);therefore, more than one configuration setting can serve as default based on the configuration pin settingslatched at device reset.
Submit Documentation Feedback Device Configurations 99
l TEXAS INSTRUMENTS B‘Dl‘ U E m1 ax no YIMIIBK no E E \_l as» um WEN u AEM uu AEM m mm
HostBlock(27pins)(A)(C)
PCI(27)
PCIEN=1
HOSTBK=000
GPIO(27)
PCIEN=0
HOSTBK=000
VLYNQ
(10)
GPIO(17)
VLYNQ
(10)
EMAC(15)
MDIO
(2)
PCIEN=0
HOSTBK=001
PCIEN=0
HOSTBK=010
PCIEN=0
HOSTBK=011
PCIEN=0
HOSTBK=100
HPI(26)
GPIO(1)
EMAC(15)
MDIO
(2)
GPIO(10)
GPIOBlock(4pins)(C)
PCI
(4)
PCIEN=1
GPIO
(4)
PCIEN=0
UART0DataBlock(2pins)
GPIO(2)
UR0DBK=0
UART
Data(2)
UR0DBK=1
UART0FlowControlBlock(2pins)
GPIO(2)
UR0FCBK=00
UART0
FlowCtrl(2)
UR0FCBK=01
PWM0(1)
UR0FCBK=10
GPIO(1)
Timer1Block(2pins)
GPIO(2)
TIM1BK=00
Timer1
(2)
TIM1BK=01
UART1
Data(2)
TIM1BK=10
HECC
(2)
TIM1BK=11
Timer0Block(2pins)(D)(E)
GPIO(2)
TIM0BK=00
Timer0
(2)
TIM0BK=01
McBSP0
CLKS0(1)
TIM0BK=10
McBSP1
CLKS1(1)
McBSP0
CLKS0(1)
TIM0BK=11
Timer0
TINPOL (1)
PWM1Block(1pin)
GPIO
(1)
PWM1BK=0
PWM1
(1)
PWM1BK=1
CLKOUTBlock(1pin)
GPIO
(1)
CKOBK=00
CLKOUT
(1)
CKOBK=01
PWM2
(1)
CKOBK=10
SerialPortSub-Block0(6pins)(D)
GPIO(6)
SPBK0=00
McBSP0
(6)
SPBK0=01
McASP0Receive
and3Serializers(6)
SPBK0=10
SerialPortSub-Block1(6pins)(E)
GPIO(6)
SPBK1=00
McBSP1
(6)
SPBK1=01
McASP0
Transmitand
1Serializer(6)
SPBK1=10
McBSP1
Transmit(3)
SPBK1=11
McASP0
SPDIF(3)
EMIFA/VPSSBlock(61pins)(A)(B)(C)
8-24b
VPBE
MajorConfig
Option A
8-16b
VPFE
GPIO
8-24b
VPBE
MajorConfig
OptionF
8b
VPFE
GPIO
PCI
8b
VPBE
MajorConfig
OptionB
GPIO
8-16b
VPFE
8bEMIFA
(Async)
Pinout
Mode1
32KB-16MB
perCE
8-16b
VPBE
MajorConfig
OptionC
GPIO
8b
VPFE
8bEMIFA
(Async)
Pinout
Mode3
32KBper
CE
8-16b
VPBE
MajorConfig
OptionD
GPIO
8b
VPFE
8bEMIFA
(NAND)
Pinout
Mode4
8b
VPBE
MajorConfig
OptionE
GPIO
8-16b
VPFE
8bEMIFA
(NAND)
Pinout
Mode5
8b
VPBE
MajorConfig
OptionG
GPIO
8b
VPFE
8bEMIFA
(NAND)
Pinout
Mode5
PCI
PCIDataBlock(3pins)(C)
PCI(3)
Notmuxed
AEM=000,
PCIEN=0
AEM=001,
PCIEN=0
AEM=011,
PCIEN=0 AEM=100,
PCIEN=0
AEM=101,
PCIEN=0
AEM=000,
PCIEN=1
AEM=101,
PCIEN=1
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
A. Default settings for PINMUX0 and PINMUX1 registers are underlined.
B. EMIFA/VPSS Block: shows the Major Config Options based on the AEM and PCIEN settings. Actual pin functions inthe EMIFA/VPSS Block are further determined by other PINMUX fields.
C. PCI pins span multiple blocks (Host Block, GPIO Block, EMIFA/VPSS Block, and PCI Data Block). For PCI to beoperational, PCI pins must be selected in all of these Pin Mux Blocks. For the EMIFA/VPSS Block, PCI is onlysupported if AEM = 000b or 101b.
D. McBSP0 pins span multiple blocks (Serial Port Sub-Block0 and Timer0 Block). Serial Port Sub-Block0 contains mostof the pins needed for McBSP0 operation. Timer0 Block contains the optional external clock source input CLKS0.
E. McBSP1 spans multiple blocks (Serial Port Sub-Block1, Timer0 Block). Serial Port Sub-Block1 contains most of thepins needed for McBSP1 operation. Timer0 Block contains the optional external clock soruce input CLKS1.
Figure 3-11. Pin Mux Block Selection
Device Configurations100 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.7.1 Pin Muxing Selection At Reset
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
This section summarizes pin mux selection at reset.
The configuration pins AEM[2:0], AEAW[2:0], and PCIEN latched at device reset determine default pinmuxing for the following Pin Mux Blocks:
EMIFA/VPSS Block: default pin mux determined by AEM[2:0], AEAW[2:0], and PCIEN. After reset,software may modify settings in the PINMUX0 register to add VPBE and VPFE functionalitiesinto this block. However, after reset, software is not allowed to modify PINMUX1.PCIEN settingto change PCI pinout.
AEM[2:0] = 000b, AEAW[2:0] = don't care, PCIEN = 0: Major Config Option A is selected. Thisblock defaults to 61 GPIO pins.
AEM[2:0] = 001b, AEAW[2:0] = 000b to 100b, PCIEN = 0: Major Config Option B is selected. Thisblock defaults to 8-bit EMIFA (Async) Pinout Mode 1, plus 24 to 32 GPIO pins.
AEM[2:0] = 011b, AEAW[2:0] = don't care, PCIEN = 0: Major Config Option C is selected. Thisblock defaults to 8-bit EMIFA (Async) Pinout Mode 3, plus 33 GPIO pins.
AEM[2:0] = 100b, AEAW[2:0] = don't care, PCIEN = 0: Major Config Option D is selected. Thisblock defaults to 8-bit EMIFA (NAND) Pinout Mode 4, plus 47 GPIO pins.
AEM[2:0] = 101b, AEAW[2:0] = don't care, PCIEN = 0: Major Config Option E is selected. Thisblock defaults to 8-bit EMIFA (NAND) Pinout mode 5, plus 47 GPIO pins.
AEM[2:0] = 000b, AEAW[2:0] = don't care, PCIEN = 1: Major Config Option F is selected. Thisblock defaults to PCI pins, plus 45 GPIO pins.
AEM[2:0] = 101b, AEAW[2:0] = don't care, PCIEN = 1: Major Config Option G is selected. Thisblock defaults to 8-bit EMIFA (NAND) Pinout mode 5, PCI pins, plus 31 GPIO pins.Host Block: default pin mux determined by PCIEN.
PCIEN = 0: the 27 pins in Host Block default to GPIO function. Software may programPINMUX1.HOSTBK to modify pin functions after reset.
PCIEN = 1: the 27 pins in Host Block serve as PCI pins. Software is not allowed to modify thissetting after reset.GPIO Block: pin function determined by PCIEN configuration pin.
PCIEN = 0: the 4 pins in GPIO Block serve as GPIO pins. Software is not allowed to modify thissetting after reset.
PCIEN = 1: the 4 pins in GPIO Block serve as PCI pins. Software is not allowed to modify thissetting after reset.PCI Data Block: pin function determined by PCIEN.
PCIEN = 0: the 3 pins in PCI Data Block have no function and should be left unconnected.Software is not allowed to modify this setting after reset.
PCIEN = 1: the 3 pins in PCI Data Block serve as PCI pins. Software is not allowed to modifythis setting after reset.
For a description of the PINMUX0 and PINMUX1 registers and more details on pin muxing, seeSection 3.7.2 .
Submit Documentation Feedback Device Configurations 101
l TEXAS INSTRUMENTS
3.7.2 Pin Muxing Selection After Reset
3.7.2.1 PINMUX0 Register Description
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The PINMUX0 and PINMUX1 registers in the System Module allow software to select the pin functions inthe Pin Mux Blocks. The pin control of some of the Pin Mux Blocks requires a combination ofPINMUX0/PINMUX1 bit fields. For more details on the combination of the PINMUX bit fields that controleach muxed pin, see Section 3.7.3.1 ,Multiplexed Pins on DM6437.
This section only provides an overview of the PINMUX0 and PINMUX1 registers. For more detaileddiscussion on how to program each Pin Mux Block, see Section 3.7.3 ,Pin Multiplexing Details.
The Pin Multiplexing 0 Register (PINMUX0) controls the pin function in the EMIFA/VPSS Block. ThePINMUX0 register format is shown in Figure 3-12 and the bit field descriptions are given in Table 3-19 .Some muxed pins are controlled by more than one PINMUX bit field. For the combination of the PINMUXbit fields that control each muxed pin, see Section 3.7.3.1 ,Multiplexed Pins on DM6437. For moreinformation on EMIFA/VPSS Block pin muxing, see Section 3.7.3.13 ,EMIFA/VPSS Block Muxing. For thepin-by-pin muxing control of the EMIFA/VPSS Block, see Section 3.7.3.13.7 ,EMIFA/VPSS BlockPin-By-Pin Multiplexing Summary.
Note: In addition to PINMUX0 bit fields, the EMIFA/VPSS Block also requires the PCIEN bit in the PinMultiplexing 1 Register (PINMUX1, Section 3.7.2.2 ) to determine the PCI settings.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CFLDSE CWEN CCDCSERSV CI10SEL RSV CI32SEL RSV CI54SEL CI76SEL HVDSEL RSV RSV AEAWL SEL L
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-LLL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VPBE
RGBSEL CS3SEL CS4SEL CS5SEL VENCSEL RSV AEMCKEN
R/W-0 R/W-000 R/W-00 R/W-00 R/W-00 R/W-00 R/W-0 R/W-LLL
LEGEND: R/W = Read/Write; R = Read only; L = pin state latched at reset rising edge; - n= value after reset(1)
For proper DM6437 device operation, always write a value of "0" to all RESERVED/RSV bits.
Figure 3-12. PINMUX0 Register— 0x01C4 0000
(1)
Table 3-19. PINMUX0 Register Descriptions
Bit Field Name Description Pins Controlled
Reserved. For proper device operation, the user should only write "0" to this bit31 RSV
(default).
CI[1:0] Function Select.
Sub-Block 00 = No CCDC CI[1:0].
CI1(CCD9)/EM_A[19]/ PREQ/EM_D[6]/GP[45]Pins function as PCI or GPIO or EMIFA based on AEM, AEAW, and PCIENsettings ( default).
CI0(CCD8)/EM_A[20]/ PINTA/EM_D[7]/GP[44]30 CI10SEL
1 = Selects CCDC [1:0] (as CCD8 and CCD9, respectively) to get at least a 10-bit
The combination of PINMUX0/1 fields AEM,CCDC.
AEAW, PCIEN, and CI10SEL bits control theTo use the 10-bit CCDC, the user must also configure PINMUX0.CCDCSEL = 1.
pin muxing of these 2 pins.
(1)
Not applicable (N/A) for AEM = 3 (011b), 4 (100b), or PCIEN = 1.
Reserved. For proper device operation, the user should only write "0" to this bit29 RSV
(default).
(1) For the full set of valid configurations of these pins, see Section 3.7.3.13.7 ,EMIFA/VPSS Block Pin-By-Pin Multiplexing Summary.
102 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-19. PINMUX0 Register Descriptions (continued)
Bit Field Name Description Pins Controlled
CI[3:2] Function Select.
Sub-Block 00 = No CCDC CI[3:2].Pins function as PCI or GPIO or EMIFA based on AEM, AEAW, and PCIEN
CI3(CCD11)/EM_A[17]/AD31/EM_D[4]/GP[47]settings ( default).
CI2(CCD10)/EM_A[18]/ PRST/EM_D[5]/GP[46]28 CI32SEL
1 = Selects CCDC [3:2] (as CCD10 and CCD11, respectively) to get at least a
The combination of PINMUX0/1 fields AEM,12-bit CCDC.
AEAW, PCIEN, and CI32SEL bits control theTo use the 12-bit CCDC, the user must also configure PINMUX0.CCDCSEL = 1
pin muxing of these 2 pins.
(1)and PINMUX0.CI10SEL = 1.Not applicable (N/A) for AEM = 3 (011b), 4 (100b), or PCIEN = 1.
Reserved. For proper device operation, the user should only write "0" to this bit27 RSV
(default).
CI[5:4] Function Select.
Sub-Block 00 = No CCDC CI[5:4].Pins function as PCI or GPIO or EMIFA based on AEM, AEAW, and PCIEN
CI5(CCD13)/EM_A[15]/AD29/EM_D[2]/GP[49]settings ( default).
CI4(CCD12)/EM_A[16]/ PGNT/EM_D[3]/GP[48]26 CI54SEL
1 = Selects CCDC [5:4] (as CCD12 and CCD13, respectively) to get at least a
The combination of PINMUX0/1 fields AEM,14-bit CCDC.
AEAW, PCIEN, and CI54SEL bits control theTo use the 14-bit CCDC, the user must also configure PINMUX0.CCDCSEL = 1,
pin muxing of these 2 pins.
(1)PINMUX0.CI10SEL = 1, and PINMUX0.CI32SEL = 1.Not applicable (N/A) for AEM = 3 (011b), 4 (100b), or PCIEN = 1.
CI[7:6] Function Select.
Sub-Block 00 = No CCDC CI[7:6].Pins function as PCI or GPIO or EMIFA based on AEM, AEAW, and PCIEN
CI7(CCD15)/EM_A[13]/AD25/EM_D[0]/GP[51]settings ( default).
CI6(CCD14)/EM_A[14]/AD27/EM_D[1]/GP[50]25 CI76SEL
1 = Selects CCDC [7:6] (as CCD14 and CCD15, respectively) to get at least a
The combination of PINMUX0/1 fields AEM,16-bit CCDC.
AEAW, PCIEN, and CI76SEL bits control theTo use the 16-bit CCDC, the user must also configure PINMUX0.CCDCSEL = 1,
pin muxing of these 2 pins.
(1)PINMUX0.CI10SEL = 1, PINMUX0.CI32SEL = 1, and PINMUX0.CI54SEL = 1.Not applicable (N/A) for AEM = 3 (011b), 4 (100b), or PCIEN = 1.
Sub-Block 0CCDC Field Select.
C_FIELD/EM_A[21]/GP[34]0 = No CCDC Field (C_FIELD).24 CFLDSEL
Pin functions as EMIFA EM_A[21] or GPIO based on AEM setting ( default).
The combination of PINMUX0/1 fieldsCFLDSEL and AEM control the muxing of this1 = CCDC Field (C_FIELD).
pin.
(1)
CCDC Write Enable Select.
Sub-Block 00 = No CCDC Write Enable.Pin functions as EMIFA EM_R/ W or GPIO based on AEM setting ( default). C_WE/EM_R/ W/GP[35]23 CWENSEL
1 = CCDC Write Enable (C_WE). The combination of PINMUX0 fields CWENSELPin functions as CCDC Write Enable C_WE. and AEM control the muxing of this pin.
(1)
Applicable only for AEM = 0 (000b), 4 (100b), or 5 (101b).
Sub-Block 0CCDC HD and VD Select.
VD/GP[53]0 = No CCDC HD and VD.22 HVDSEL HD/GP[52]Pins function as GPIO (GP[53] and GP[52]) ( default).
The PINMUX0 field HVDSEL alone controls the1 = CCDC HD and VD.
muxing of these 2 pins.
Reserved. For proper device operation, the user should only write "0" to this bit21 RSV
(default).
Sub-Block 0
PCLK/GP[54]
YI7(CCD7)/GP[43]CCDC Select.
YI6(CCD6)/GP[42]This bit field determines if CCDC is supported or not.
YI5(CCD5)/GP[41]0 = CCDC not supported. YI4(CCD4)/GP[40]20 CCDCSEL
Pins function as GPIO (GP[54] and GP[43:36]) ( default). YI3(CCD3)/GP[39]
YI2(CCD2)/GP[38]1 = CCDC supported.
YI1(CCD1)/GP[37]Pins function as CCDC PCLK, YI[7:0].
YI0(CCD0)/GP[36]
The PINMUX0 field CCDCSEL alone controlsthe muxing of these 9 pins.
Reserved. For proper device operation, the user should only write "0" to this bit19 RSV
(default).
Submit Documentation Feedback Device Configurations 103
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-19. PINMUX0 Register Descriptions (continued)
Bit Field Name Description Pins Controlled
8-bit EMIFA (Async) Pinout Mode 1 Address Width Select or Fast Boot PLLMultiplier SelectThis field serves two purposes:
1. If AEM = 001b, this field serves as the 8-bit EMIFA (Async) Pinout Mode 1Address Width Select.
2. If FASTBOOT = 1 and AEM = 0 (000b), 3 (011b), 4 (100b), or 5 (101b), thisfield serves as the Fastboot PLL Multiplier Select.
Fastboot PLL Multiplier Select: For more details on the AEAW pin functions asFastboot PLL Multiplier Select, see Section 3.4.1 ,Bootmodes.
EMIFA Address Width Select:
Sub-Block 0000b = EMIFA (Async) pinout supports only EM_A[12:0] address pins.EMIFA (Async) signals EM_A[20:13] are not pinned out. PINMUX bit fields
CI7(CCD15)/EM_A[13]/AD25/EM_D[0]/GP[51]PCIEN, CI76SEL, CI54SEL, CI32SEL, and CI10SEL determine the function of
CI6(CCD14)/EM_A[14]/AD27/EM_D[1]/GP[50]these 8 pins.
CI5(CCD13)/EM_A[15]/AD29/EM_D[2]/GP[49]
CI4(CCD12)/EM_A[16]/ PGNT/EM_D[3]/GP[48]001b = EMIFA (Async) pinout supports only EM_A[14:0] address pins.
CI3(CCD11)/EM_A[17]/AD31/EM_D[4]/GP[47]EMIFA (Async) signals EM_A[14:13] are pinned out. PINMUX0 bit field CI76SEL18:16 AEAW
(2)
CI2(CCD10)/EM_A[18]/ PRST/EM_D[5]/GP[46]must be programmed to 0.
CI1(CCD9)/EM_A[19]/ PREQ/EM_D[6]/GP[45]EMIFA (Async) signals EM_A[20:15] are not pinned out. PINMUX0 bit fields
CI0(CCD8)/EM_A[20]/ PINTA/EM_D[7]/GP[44]CI54SEL, CI32SEL, and CI10SEL determine the function of these 6 pins.
The combination of PINMUX0/1 fields PCIEN,010b = EMIFA (Async) pinout supports only address pins EM_A[16:0].
AEM, AEAW, CI10SEL, CI32SEL, CI54SEL,EMIFA (Async) signals EM_A[16:13] are pinned out. PINMUX0 bit fields CI76SEL
and CI76SEL control the muxing of these 8and CI54SEL must be programmed to 0.
pins.
(1)EMIFA (Async) signals EM_A[20:17] are not pinned out. PINMUX0 bit fieldsCI32SEL and CI10SEL determine the function of these 4 pins.
011b = EMIFA (Async) pinout supports only address pins EM_A[18:0].EMIFA (Async) signals EM_A[18:13] are pinned out. PINMUX0 bit fieldsCI76SEL, CI54SEL, and CI32SEL must be programmed to 0.EMIFA (Async) signals EM_A[20:19] are not pinned out. PINMUX0 bit fieldCI10SEL determines the function of these 2 pins.
100b = EMIFA (Async) pinout supports address pins EM_A[20:0].EMIFA (Async) signals EM_A[20:13] are pinned out. PINMUX0 bit fieldsCI76SEL, CI54SEL, CI32SEL, and CI10SEL must be programmed to 0.
101b through 111b = Reserved.
VPBE Clock Select.
Sub-Block 1
0 = GPIO ( default)
VPBECLK/GP[30]15 VPBECKEN Pin functions as GPIO (GP[30]).
The PINMUX0 field VPBECKEN alone controls1 = VPBE Clock (VPBECLK)
the muxing of this pin.Pin functions as VPBE Clock (VPBECLK).
VENC RGB Mode and LCD_FIELD Select.
000b = No VENC RGB Mode or LCD_FIELD supported.These pins function as GPIO and/or EMIFA based on AEM setting ( default).
001b = LCD_FIELD Mode.
Sub-Block 1VENC LCD_FIELD pin function is supported. The remaining 7 pins function asGPIO and/or EMIFA based on AEM setting.
G0/ EM_CS2/GP[12]Applicable only if AEM = 0 (000b), 4 (100b), or 5 (101b).
B0/LCD_FIELD/EM_A[3]/GP[11]
R0/EM_A[4]/GP[10]/(AEAW2/PLLMS2)010b = RGB666 Mode.
G1/EM_A[1]/(ALE)/GP[9]/AEAW1/PLLMS1)VENC RGB666 pins (R2, B2) are supported, along with 6 GPIO pins (GP[12:7]).14:12 RGBSEL B1/EM_A[2]/(CLE)/GP[8]/(AEAW0/PLLMS0)Applicable only if AEM = 0 (000b).
R1/EM_A[0]/GP[7]/(AEM2)
R2/EM_BA[0]/GP[6]/(AEM1)011b = RGB666 + LCD_FIELD Mode.
B2/EM_BA[1]/GP[5]/(AEM0)VENC RGB666 (R2, B2) and LCD_FIELD pins are supported, along with 5 GPIOpins (GP[12] and GP[10:7]).
The combination of PINMUX0 fields RGBSELApplicable only if AEM = 0 (000b).
and AEM, control the muxing of these 8 pins.
(1)
100b = RGB888 Mode.VENC RGB888 (G0, B0, R0, G1, B1, R1, R2, B2) pins are supported.Applicable only if AEM = 0 (000b).
101b through 111b = Reserved.
(2) The AEAW default value is latched at reset from AEAW[2:0] configuration inputs. The latched values are also shown atBOOTCFG.PLLMS ( read-only).
Device Configurations104 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-19. PINMUX0 Register Descriptions (continued)
Bit Field Name Description Pins Controlled
Chip Select 3 Select.
Sub-Block 100 = GPIO pin (GP13) ( default)
LCD_OE/ EM_CS3/GP[13]11:10 CS3SEL 01 = EMIFA Chip Select 3 ( EM_CS3)
The PINMUX0 field CS3SEL alone controls the10 = VENC LCD Output Enable (LCD_OE)
muxing of this pin.
11 = Reserved
Chip Select 4 Select.
Sub-Block 100 = GPIO pin (GP32) ( default)
VSYNC/ EM_CS4/GP[32]9:8 CS4SEL 01 = EMIFA Chip Select 4 ( EM_CS4)
The PINMUX0 field CS4SEL alone controls the10 = VENC Vertical Sync (VSYNC)
muxing of this pin.
11 = Reserved
Chip Select 5 Select.
Sub-Block 100 = GPIO pin (GP33) ( default)
HSYNC/ EM_CS5/GP[33]7:6 CS5SEL 01 = EMIFA Chip Select 5 ( EM_CS5)
The PINMUX0 field CS5SEL alone controls the10 = VENC Horizontal Sync (HSYNC)
muxing of this pin.
11 = Reserved
Sub-Block 1
VCLK/GP[31]
YOUT7/GP[29]
YOUT6/GP[28]
YOUT5/GP[27]VENC Mode Select.
YOUT4/GP[26]
YOUT3/GP[25]00 = No VENC supported.
YOUT2/GP[24]9 pins function as GPIO (GP[31], GP[29:22]). The remaining 8 pins function as
YOUT1/GP[23]GPIO/EMIFA based on AEM setting.
YOUT0/GP[22]
01 = 8-bit VENC supported.
The PINMUX0 field VENCSEL alone controls5:4 VENCSEL VENC VCLK, YOUT[7:0] functions are pinned out. The remaining 8 pins function
the muxing of these 9 pins.as GPIO/EMIFA based on AEM setting.
COUT7/EM_D[7]/GP[21]10 = 16-bit VENC supported.
COUT6/EM_D[6]/GP[20]These pins function as VENC VCLK, YOUT[7:0], and COUT[7:0].
COUT5/EM_D[5]/GP[19]Applicable only if AEM = 0 (000b), 3 (011b), 4 (100b).
COUT4/EM_D[4]/GP[18]
COUT3/EM_D[3]/GP[17]11 = Reserved
COUT2/EM_D[2]/GP[16]
COUT1/EM_D[1]/GP[15]
COUT0/EM_D[0]/GP[14
The combination of PINMUX fields VENCSELand AEM control the muxing of these 8 pins.
(1)
Reserved. For proper device operation, the user should only write "0" to this bit3 RSV
(default).
Submit Documentation Feedback Device Configurations 105
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-19. PINMUX0 Register Descriptions (continued)
Bit Field Name Description Pins Controlled
Sub-Block 0
C_WE/EM_R/ W/GP[35]C_FIELD/EM_A[21]/GP[34]
CI7(CCD15)/EM_A[13]/AD25/EM_D[0]/GP[51]
CI6(CCD14)/EM_A[14]/AD27/EM_D[1]/GP[50]
CI5(CCD13)/EM_A[15]/AD29/EM_D[2]/GP[49]
CI4(CCD12)/EM_A[16]/ PGNT/EM_D[3]/GP[48]CI3(CCD11)/EM_A[17]/AD31/EM_D[4]/GP[47]
CI2(CCD10)/EM_A[18]/ PRST/EM_D[5]/GP[46]CI1(CCD9)/EM_A[19]/ PREQ/EM_D[6]/GP[45]EMIFA Pinout Modes
CI0(CCD8)/EM_A[20]/ PINTA/EM_D[7]/GP[44]This field does not affect the actual EMIFA operation. It only determines whatmultiplexed pins in the EMIFA/VPSS Block serves as EMIFA pins.
Sub-Block 1
000b = No EMIFA Mode.
COUT7/EM_D[7]/GP[21]None of the multiplexed pins in the EMIFA/VPSS Block serves as EMIFA pins.
COUT6/EM_D[6]/GP[20]
COUT5/EM_D[5]/GP[19]001b = 8-bit EMIFA (Async) Pinout Mode 1.
COUT4/EM_D[4]/GP[18](Up to 16M-Byte address reach per Chip Select Space).
COUT3/EM_D[3]/GP[17]Pinout allows up to a maximum of these functions from EMIFA/VPSS Block: 8-bit
COUT2/EM_D[2]/GP[16]EMIFA (Async or NAND) + 16-bit CCDC (VPFE) + 8-bit VENC (VPBE)
COUT1/EM_D[1]/GP[15]
COUT0/EM_D[0]/GP[14]010b = Reserved.
G0/ EM_CS2/GP[12]2:0 AEM
(3)
011b = 8-bit EMIFA (Async) Pinout Mode 3.
B0/LCD_FIELD/EM_A[3]/GP[11](32K-Byte reach per Chip Select Space).
R0/EM_A[4]/GP[10]/(AEAW2/PLLMS2)Pinout allows up to a maximum of these functions from EMIFA/VPSS Block: 8-bit
G1/EM_A[1]/(ALE)/GP[9]/(AEAW1/PLLMS1)EMIFA (Async or NAND) + 8-bit CCDC (VPFE) + 16-bit VENC (VPBE)
B1/EM_A[2]/(CLE)/GP[8]/(AEAW0/PLLMS0)
R1/EM_A[0]/GP[7]/(AEM2)100b = 8-bit EMIFA (NAND) Pinout Mode 4.
R2/EM_BA[0]/GP[6]/(AEM1)Pinout allows up to a maximum of these functions from EMIFA/VPSS Block: 8-bit
B2/EM_BA[1]/GP[5]/(AEM0)EMIFA (NAND) + 8-bit CCDC (VPFE) + 16-bit VENC (VPBE)
Sub-Block3101b = 8-bit EMIFA (NAND) Pinout Mode 5.Pinout allows up to a maximum of these functions from EMIFA/VPSS Block: 8-bit
EM_A[12]/ PCBE3/GP[89]EMIFA (NAND) + 16-bit CCDC (VPFE) + 8-bit VENC (VPBE)
EM_A[11]/AD24/GP[90]
EM_A[10]/AD23/GP[91]110b through 111b = Reserved
EM_A[9]/PIDSEL/GP[92]
EM_A[8]/AD21/GP[93]
EM_A[7]/AD22/GP[94]
EM_A[6]/AD20/GP[95]
EM_A[5]/AD19/GP[96]
The pin mux for these pins are controlled by acombination of AEM and other PINMUX0 fields,including CWENSEL, CFLDSEL, AEAW,PCIEN, CI76SEL, CI54SEL, CI32SEL,CI10SEL, VENCSEL, and RGBSEL.
(1)
(3) The AEM default value is latched at reset from AEM[2:0] configuration inputs. The latched values are also shown at BOOTCFG.DAEM(read-only).
106 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.7.2.2 PINMUX1 Register Description
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The Pin Multiplexing 1 Register (PINMUX1) controls the pin multiplexing of all Pin Mux Blocks. ThePINMUX1 register format is shown in Figure 3-13 and the bit field descriptions are given in Table 3-20 .Some muxed pins are controlled by more than one PINMUX bit field. For the combination of PINMUX bitfields that control each muxed pin, see Section 3.7.3.1 ,Multiplexed Pins on DM6437.
31 26 25 24 23 22 21 20 19 18 17 16
RESERVED SPBK1 SPBK0 TIM1BK RSV TIM0BK
R/W-0000 00 R/W-00 R/W-00 R/W-00 R/W-00 R/W-00
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PWM1BCKOBK RSV UR0FCBK RSV UR0DBK RSV HOSTBK RESERVED PCIENK
R/W-01 R/W-0 R/W-0 R/W-00 R/W-0 R/W-0 R/W-0 R/W-000 R/W-000 R-P
LEGEND: R/W = Read/Write; R = Read only; P = specified pin state; - n= value after reset(1)
For proper DM6437 device operation, always write a value of "0" to all RESERVED/RSV bits.
Figure 3-13. PINMUX1 Register— 0x01C4 0004
(1)
Table 3-20. PINMUX1 Register Descriptions
Bit Field Name Description Pins Controlled
Reserved. For proper device operation, the user should only write "0" to this bit31:26 RESERVED (default).
Serial Port Sub-Block 1 Pin Select.Selects the function of the multiplexed pins in the Serial Port Sub-Block 1.
00 = GPIO Mode ( default).Pins function as GPIO (GP[110:105]).
Serial Port Sub-Block 1:AXR0[0]/FSR1/GP[105]01 = McBSP1 Mode.
ACLKX0/CLKX1/GP[106]Pins function as McBSP1: CLKX1, FSX1, DX1, CLKR1, FSR1, and DR1.25:24 SPBK1 AFSX0/DX1/GP[107]
AHCLKX0/CLKR1/GP[108]10 = McASP0 Transmit and 1 serializer.
AMUTEIN0/FSX1/GP[109]Pins function as McASP0: AXR0[0], ACLKX0, AFSX0, AHCLKX0, AMUTEIN0,
AMUTE0/DR1/GP[110]and AMUTE0.
11 = McBSP1 Transmit + McASP0 SPDIF Mode.Pins function as McBSP1 transmit (CLKX1, FSX1, DX1) and McASP0 SPDIF(AXR0[0], AHCLKX0, AMUTE0).
Serial Port Sub-Block 0 Pin Select.Selects the function of the multiplexed pins in the Serial Port Sub-Block 0.
00 = GPIO Mode ( default).
Serial Port Sub-Block 0:Pins function as GPIO (GP[104:99]).
ACLKR0/CLKX0/GP[99]
AFSR0/DR0/GP[100]01 = McBSP0 Mode.23:22 SPBK0 AHCLKR0/CLKR0/GP[101]Pins function as McBSP0 CLKX0, FSX0, DX0, CLKR0, FSR0, and DR0.
AXR0[3]/FSR0/GP[102]
AXR0[2]/FSX0/GP[103]10 = McASP0 Receive and 3 serializers.
AXR0[1]/DX0/GP[104]Pins function as McASP0 ACLKR0, AFSR0, AHCLKR0, AXR0_3, AXR0_2, andAXR0_1.
11 = Reserved
Timer1 Block Pin Select.Selects the function of the multiplexed pins in theTimer1 Block.
00 = GPIO Mode ( default).Pins function as GPIO (GP[56:55]).
Timer1 Block:01 = Timer1 Mode.21:20 TIM1BK HECC_RX/TINP1L/URXD1/GP[56]Pins function as Timer1 TINP1L and TOUT1L.
HECC_TX/TOUT1L/UTXD1/GP[55]
10 = UART1 Data Mode.Pins function as UART1 data pins URXD1 and UTXD1.
11 = HECC Mode.Pins function as HECC HECC_RX and HECC_TX.
Submit Documentation Feedback Device Configurations 107
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-20. PINMUX1 Register Descriptions (continued)
Bit Field Name Description Pins Controlled
Reserved. For proper device operation, the user should only write "0" to this bit19:18 RSV (default).
Timer0 Block Pin Select.Selects the function of the multiplexed pins in the Timer0 Block.
00 = GPIO Mode ( default).Pins function as GPIO (GP[98:97]).
01 = Timer0 Mode.
Timer0 Block:Pins function as Timer0 TINP0L and TOUT0L.17:16 TIM0BK CLKS1/TINP0L/GP[98]
CLKS0/TOUT0L/GP[97]10 = McBSP0 and McBSP1 External Clock Source Mode.Pins function as McBSP0 and McBSP1 external clock source pins, CLKS0 andCLKS1, respectively.
11 = McBSP0 External Clock Source + Timer0 Input Mode.Pins function as McBSP0 external clock source CLKS0, and Timer0 inputTINP0L.
CLKOUT Block Pin Select.Selects the function of the multiplexed pins in the CLKOUT Block.
00 = GPIO Mode.Pin functions as GPIO (GP[84]).
CLKOUT Block:15:14 CKOBK 01 = CLKOUT Mode ( default).
CLKOUT0/PWM2/GP[84]Pin functions as device clock output CLKOUT0, sourced from PLLC1 OBSCLK.
10 = PWM2 Mode.Pin functions as PWM2.
11 = Reserved
Reserved. For proper device operation, the user should only write "0" to this bit13 RSV (default).
PWM1 Block Pin Select.Selects the function of the multiplexed pins in the PWM1 Block.
0 = GPIO Mode ( default). PWM1 Block:12 PWM1BK
Pin functions as GPIO (GP[4]). GP[4]/PWM1
1 = PWM1 Mode.Pin functions as PWM1.
UART0 Flow Control Block Pin Select.Selects the function of the multiplexed pins in the UART0 Flow Control Block.
00 = GPIO Mode ( default).Pins function as GPIO (GP[88:87]).
UART0 Flow Control Block:11:10 UR0FCBK 01 = UART0 Flow Control Mode. UCTS0/GP[87]Pins function as UART0 Flow Control UCTS0 and URTS0. URTS0/PWM0/GP[88]
10 = PWM0 + GPIO Mode.Pins function as PWM0 and GPIO (GP[87]).
11 = Reserved
Reserved. For proper device operation, the user should only write "0" to this bit9 RSV (default).
UART0 Data Block Pin Select.Selects the function of the multiplexed pins in the UART0 Data Block.
UART0 Data Block:0 = GPIO Mode ( default).8 UR0DBK URXD0/GP[85]Pins function as GPIO (GP[86:85]).
UTXD0/GP[86]
1 = UART0 Data Mode.Pins function as UART0 data URXD0 and UTXD0.
108 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-20. PINMUX1 Register Descriptions (continued)
Bit Field Name Description Pins Controlled
Reserved. For proper device operation, the user should only write "0" to this bit7 RSV (default).
Host Block:
VLYNQ_CLOCK/PCICLK/GP[57]Host Block Pin Select.
HD0/VLYNQ_SCRUN/AD18/GP[58]If EMAC opertaion is desired, EMAC must be placed in reset before
HD1/VLYNQ_RXD0/AD16/GP[59]programminng PINMUX1 HOSTBK to select EMAC pins.
HD2/VLYNQ_RXD1/AD17/GP[60]
HD3/VLYNQ_RXD2/ PCBE2/GP[61]PCIEN = 0 and HOSTBK = 000: GPIO Mode ( default if PCIEN = 0).
HD4/VLYNQ_RXD3/ PFRAME/GP[62]Pins function as GPIO (GP[83:57]).
HD5/VLYNQ_TXD0/ PIRDY/GP[63]HD6/VLYNQ_TXD1/ PTRDY/GP[64]PCIEN = 0 and HOSTBK = 001: HPI + 1 GPIO Mode.
HD7/VLYNQ_TXD2/ PDEVSEL/GP[65]Pins function as HPI and GPIO (GP[57]).
HD8/VLYNQ_TXD3/ PPERR/GP[66]PCIEN = 0 and HOSTBK = 010: VLYNQ + 17 GPIO Mode. HD9/MCOL/ PSTOP/GP[67]Pins function as VLYNQ (VLYNQ_CLOCK, VLYNQ_SCRUN, VLYNQ_RXD[3:0], HD10/MCRS/ PSERR/GP[68]VLYNQ_TXD[3:0]), and GP[83:67]. HD11/MTXD3/ PCBE1/GP[69] HD12/MTXD2/PPAR/GP[70]PCIEN = 0 and HOSTBK = 011: VLYNQ + MII + MDIO Mode.6:4 HOSTBK
HD13/MTXD1/AD14/GP[71]Pins function as VLYNQ (VLYNQ_CLOCK, VLYNQ_SCRUN, VLYNQ_RXD[3:0],
HD14/MTXD0/AD15/GP[72]VLYNQ_TXD[3:0]), MII (TXCLK, CRS, COL, TXD[3:0], RXVD, TXEN, RXER,
HD15/MTXCLK/AD12/GP[73]RXCLK, RXD[3:0]), and MDIO (MDIO, MDC).
HHWIL/MRXDV/AD13/GP[74]
HCNTL1/MTXEN/AD11/GP[75]PCIEN = 0 and HOSTBK = 100: MII + MDIO +10 GPIO Mode.
HCNTL0/MRXER/AD10/GP[76]Pins function as MII (TXCLK, CRS, COL, TXD[3:0], RXVD, TXEN, RXER,
HR/ W/MRXCLK/AD8/GP[77]RXCLK, RXD[3:0]), MDIO (MDIO, MDC), and GP[66:57].
HDS2/MRXD0/AD9/GP[78]
HDS1/MRXD1/AD7/GP[79]PCIEN = 1 and HOSTBK = 000: PCI Mode ( default if PCIEN = 1).
HRDY/MRXD2/ PCBE0/GP[80]Pins function as PCI pins: PCICLK, PCBE2, PCBE1, PCBE0, PFRAME,
HCS/MDCLK/AD5/GP[81]PIDRDY, PTRDY, PDEVSEL, PPER, PSTOP, PSERR, PPAR, AD[18:5], and
HINT/MRXD3/AD6/GP[82]AD03.
HAS/MDIO/AD3/GP[83]All other PCIEN and HOSTBK combinations reserved.
The combination of PINMUX1 fields PCIEN andHOSTBK select the function of these 27 pins.
Reserved. For proper device operation, the user should only write "0" to this bit3:1 RESERVED (default).
Submit Documentation Feedback Device Configurations 109
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-20. PINMUX1 Register Descriptions (continued)
Bit Field Name Description Pins Controlled
Host Block:
See list of 27 pins in HOSTBK bit fielddescription
PCI Data Block:AD26
AD28
AD30
GPIO Block:
AD0/GP[0]
AD1/GP[1]PCI Enable.
AD2/GP[2]
AD4/GP[3]The PINMUX1.PCIEN reflects the state of the PCIEN pin. PINMUX1.PCIEN isread only and cannot be modified by software. For proper device
EMIFA/VPSS Sub-Block 0*:operation, the user must hold the desired setting at the PCIEN pin
CI7(CCD15)/EM_A[13]/AD25/EM_D[0]/GP[51]throughout device operation.
CI6(CCD14)/EM_A[14]/AD27/EM_D[1]/GP[50]
CI5(CCD13)/EM_A[15]/AD29/EM_D[2]/GP[49]PCIEN = 0: No PCI supported. Internal pullup/pulldown (IPU/IPD) on these pins
CI4(CCD12)/EM_A[16]/ PGNT/EM_D[3]/GP[48]are enabled.
CI3(CCD11)/EM_A[17]/AD31/EM_D[4]/GP[47]For PCI multiplexed pins in the GPIO Block, when PCIEN = 0, the pins function CI2(CCD10)/EM_A[18]/ PRST/EM_D[5]/GP[46]as GPIO (GP[3:0]). CI1(CCD9)/EM_A[19]/ PREQ/EM_D[6]/GP[45]For PCI multiplexed pins in the Host Block, refer to PINMUX1.HOSTBK field for CI0(CCD8)/EM_A[20]/ PINTA/EM_D[7]/GP[44]0 PCIEN
the actual pin functions.
EMIFA/VPSS Sub-Block 3*:For PCI multiplexed pins in the EMIFA/VPSS Block, refer to PINMUX0.AEM,
EM_A[12]/ PCBE3/GP[89]AEAW, CI76SEL, CI54SEL, CI32SEL, and CI10SEL fields for the actual pin
EM_A[11]/AD24/GP[90]functions.
EM_A[10]/AD23/GP[91]For PCI pins in the PCI Data Block, when PCIEN = 0, the pins have no function
EM_A[9]/PIDSEL/GP[92]and should be left unconnected.
EM_A[8]/AD21/GP[93]PCIEN = 1: PCI supported. Internal pullup/pulldown (IPU/IPD) on all PCI pins EM_A[7]/AD22/GP[94]are disabled. EM_A[6]/AD20/GP[95]
EM_A[5]/AD19/GP[96]All pins function as PCI pins.Applicable only for PINMUX0.AEM = 000b or 101b. The pin mux for the EMIFA/VPSS Sub-Block 0and EMIFA/VPSS Sub-Block 3 pins arecontrolled by a combination of PCIEN and otherPINMUX0/1 fields, including HOSTBK, AEM,AEAW, CI76SEL, CI54SEL, CI32SEL, andCI10SEL. See Section 3.7.3.13.7 ,EMIFA/VPSSBlock Pin-By-Pin Multiplexing Summary, for thefull set of valid configurations of EMIFA/VPSSBlock pins.For the full set of valid configurations of HostBlock pins, see Section 3.7.3.3 ,Host BlockMuxing.
Device Configurations110 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.7.3 Pin Multiplexing Details
3.7.3.1 Multiplexed Pins on DM6437
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
This section discusses how to program each Pin Mux Block to select the desired peripheral functions.
The following steps can be used to determine pin muxing suitable for the application:
1. Understand the major configuration choices available for the specific application.
a. Device Major Configuration Choices: Figure 3-11 shown in Section 3.7 ,Multiplexed PinConfigurations, provides a high-level view of the device pin muxing and can be used to determinethe possible mix of peripheral options for a specific application.b. EMIFA/VPSS Block Major Configuration Choices: The EMIFA/VPSS block features extensive pinmultiplexing to accommodate a variety of applications. In addition to Figure 3-11 ,Section 3.7.3.13 ,EMIFA/VPSS Block Muxing, provides more details on the Major Configuration choices for thisblock.
2. See Section 3.7.3.1 ,Multiplexed Pins on DM6437, for a summary of all the multiplexed pins on thisdevice and the pin mux group they belong to.
3. Refer to the individual pin mux sections (Section 3.7.3.3 ,Host Block Muxing to Section 3.7.3.13 ,EMIFA/VPSS Block Muxing) for pin muxing details for a specific pin mux block.
a. For peripherals that span multiple pin mux blocks, the user must select the appropriate pins for thatperipheral in all relevant pin mux blocks. For more details, see Section 3.7.3.2 ,PeripheralsSpanning Multiple Pin Mux Blocks.
For details on PINMUX0 and PINMUX1 registers, see Section 3.7.2 .
Table 3-21 summarizes all of the multiplexed pins on DM6437, the pin mux group for each pin, and thePINMUX register fields that control the pin. For pin mux details, see the specific pin mux group section(Section 3.7.3.3 ,Host Block Muxing to Section 3.7.3.13 ,EMIFA/VPSS Block Muxing). For a description ofthe PINMUX register fields, see Section 3.7.2 .
Table 3-21. Multiplexed Pins on DM6437
SIGNAL PINMUX DESCRIPTION
ZWT ZDUNAME PINMUX GROUP CONTROLLED BY PINMUX BIT FIELDSNO. NO.
PCLK/GP[54] A14 A18 EMIFA/VPSS Sub-Block 0 CCDCSEL
VD/GP[53] A13 A17 EMIFA/VPSS Sub-Block 0 HVDSEL
HD/GP[52] A15 A19 EMIFA/VPSS Sub-Block 0 HVDSEL
CI7(CCD15)/EM_A[13]/AD25/
B10 A12 EMIFA/VPSS Sub-Block 0 PCIEN, AEM, AEAW, CI76SELEM_D[0]/GP[51]
CI6(CCD14)/EM_A[14]/AD27/
A10 A13 EMIFA/VPSS Sub-Block 0 PCIEN, AEM, AEAW, CI76SELEM_D[1]/GP[50]
CI5(CCD13)/EM_A[15]/AD29/
B11 C13 EMIFA/VPSS Sub-Block 0 PCIEN, AEM, AEAW, CI54SELEM_D[2]/GP[49]
CI4(CCD12)/EM_A[16]/ PGNT/
C11 B13 EMIFA/VPSS Sub-Block 0 PCIEN, AEM, AEAW, CI54SELEM_D[3]/GP[48]
CI3(CCD11)/EM_A[17]/AD31/
A11 B14 EMIFA/VPSS Sub-Block 0 PCIEN, AEM, AEAW, CI32SELEM_D[4]/GP[47]
CI2(CCD10)/EM_A[18]/ PRST/
D11 A14 EMIFA/VPSS Sub-Block 0 PCIEN, AEM, AEAW, CI32SELEM_D[5]/GP[46]
CI1(CCD9)/EM_A[19]/ PREQ/
B12 C14 EMIFA/VPSS Sub-Block 0 PCIEN, AEM, AEAW, CI10SELEM_D[6]/GP[45]
CI0(CCD8)/EM_A[20]/ PINTA/
C12 C15 EMIFA/VPSS Sub-Block 0 PCIEN, AEM, AEAW, CI10SELEM_D[7]/GP[44]
YI7(CCD7)/GP[43] A12 A15 EMIFA/VPSS Sub-Block 0 CCDCSEL
YI6(CCD6)/GP[42] B13 B15 EMIFA/VPSS Sub-Block 0 CCDCSEL
YI5(CCD5)/GP[41] C13 B16 EMIFA/VPSS Sub-Block 0 CCDCSEL
Submit Documentation Feedback Device Configurations 111
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-21. Multiplexed Pins on DM6437 (continued)
SIGNAL PINMUX DESCRIPTION
ZWT ZDUNAME PINMUX GROUP CONTROLLED BY PINMUX BIT FIELDSNO. NO.
YI4(CCD4)/GP[40] D14 C18 EMIFA/VPSS Sub-Block 0 CCDCSEL
YI3(CCD3)/GP[39] B14 A16 EMIFA/VPSS Sub-Block 0 CCDCSEL
YI2(CCD2)/GP[38] C14 B17 EMIFA/VPSS Sub-Block 0 CCDCSEL
YI1(CCD1)/GP[37] B15 B18 EMIFA/VPSS Sub-Block 0 CCDCSEL
YI0(CCD0)/GP[36] C15 B19 EMIFA/VPSS Sub-Block 0 CCDCSEL
C_WE/EM_R/ W/GP[35] D13 C17 EMIFA/VPSS Sub-Block 0 AEM, CWENSEL
C_FIELD/EM_A[21]/GP[34] D12 C16 EMIFA/VPSS Sub-Block 0 AEM, CFLDSEL
HSYNC/ EM_CS5/GP[33] F19 J22 EMIFA/VPSS Sub-Block 1 CS5SEL
VSYNC/ EM_CS4/GP[32] E19 H22 EMIFA/VPSS Sub-Block 1 CS4SEL
VCLK/GP[31] D19 G22 EMIFA/VPSS Sub-Block 1 VENCSEL
VPBECLK/GP[30] G19 K22 EMIFA/VPSS Sub-Block 1 VPBECKEN
YOUT7/GP[29] H15 K21 EMIFA/VPSS Sub-Block 1 VENCSEL
YOUT6/GP[28] H16 J21 EMIFA/VPSS Sub-Block 1 VENCSEL
YOUT5/GP[27] H17 L19 EMIFA/VPSS Sub-Block 1 VENCSEL
YOUT4/GP[26]/(FASTBOOT) G17 K19 EMIFA/VPSS Sub-Block 1 VENCSEL
YOUT3/GP[25]/(BOOTMODE3) G16 H21 EMIFA/VPSS Sub-Block 1 VENCSEL
YOUT2/GP[24]/(BOOTMODE2) G15 L20 EMIFA/VPSS Sub-Block 1 VENCSEL
YOUT1/GP[23]/(BOOTMODE1) F15 K20 EMIFA/VPSS Sub-Block 1 VENCSEL
YOUT0/GP[22]/(BOOTMODE0) F18 J20 EMIFA/VPSS Sub-Block 1 VENCSEL
COUT7/EM_D[7]/GP[21] F17 H20 EMIFA/VPSS Sub-Block 1 AEM, VENCSEL
COUT6/EM_D[6]/GP[20] F16 F21 EMIFA/VPSS Sub-Block 1 AEM, VENCSEL
COUT5/EM_D[5]/GP[19] E17 F22 EMIFA/VPSS Sub-Block 1 AEM, VENCSEL
COUT4/EM_D[4]/GP[18] E18 G21 EMIFA/VPSS Sub-Block 1 AEM, VENCSEL
COUT3/EM_D[3]/GP[17] E16 F20 EMIFA/VPSS Sub-Block 1 AEM, VENCSEL
COUT2/EM_D[2]/GP[16] D17 E22 EMIFA/VPSS Sub-Block 1 AEM, VENCSEL
COUT1/EM_D[1]/GP[15] D18 G20 EMIFA/VPSS Sub-Block 1 AEM, VENCSEL
COUT0/EM_D[0]/GP[14] D16 E21 EMIFA/VPSS Sub-Block 1 AEM, VENCSEL
LCD_OE/ EM_CS3/GP[13] C18 D22 EMIFA/VPSS Sub-Block 1 CS3SEL
G0/ EM_CS2/GP[12] C19 C22 EMIFA/VPSS Sub-Block 1 AEM, RGBSEL
B0/LCD_FIELD/EM_A[3]/GP[11] B18 D21 EMIFA/VPSS Sub-Block 1 AEM, RGBSEL
R0/EM_A[4]/GP[10]/(AEAW2/PLLMS2) A17 B21 EMIFA/VPSS Sub-Block 1 AEM, RGBSEL
G1/EM_A[1]/(ALE)/GP[9]/
A16 B20 EMIFA/VPSS Sub-Block 1 AEM, RGBSEL(AEAW1/PLLMS1)
B1/EM_A[2]/(CLE)/GP[8]/
B16 A20 EMIFA/VPSS Sub-Block 1 AEM, RGBSEL(AEAW0/PLLMS0)
R1/EM_A[0]/GP[7]/(AEM2) B17 C21 EMIFA/VPSS Sub-Block 1 AEM, RGBSEL
R2/EM_BA[0]/GP[6]/(AEM1) C17 E20 EMIFA/VPSS Sub-Block 1 AEM, RGBSEL
B2/EM_BA[1]/GP[5]/(AEM0) C16 C20 EMIFA/VPSS Sub-Block 1 AEM, RGBSEL
EM_A[12]/ PCBE3/GP[89] D10 B12 EMIFA/VPSS Sub-Block 3 PCIEN, AEM
EM_A[11]/AD24/GP[90] C10 C12 EMIFA/VPSS Sub-Block 3 PCIEN, AEM
EM_A[10]/AD23/GP[91] A9 B11 EMIFA/VPSS Sub-Block 3 PCIEN, AEM
EM_A[9]/PIDSEL/GP[92] D9 C11 EMIFA/VPSS Sub-Block 3 PCIEN, AEM
EM_A[8]/AD21/GP[93] B9 A11 EMIFA/VPSS Sub-Block 3 PCIEN, AEM
EM_A[7]/AD22/GP[94] C9 C10 EMIFA/VPSS Sub-Block 3 PCIEN, AEM
EM_A[6]/AD20/GP[95] D8 B10 EMIFA/VPSS Sub-Block 3 PCIEN, AEM
EM_A[5]/AD19/GP[96] B8 A10 EMIFA/VPSS Sub-Block 3 PCIEN, AEM
Device Configurations112 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-21. Multiplexed Pins on DM6437 (continued)
SIGNAL PINMUX DESCRIPTION
ZWT ZDUNAME PINMUX GROUP CONTROLLED BY PINMUX BIT FIELDSNO. NO.
VLYNQ_CLOCK/PCICLK/GP[57] A7 A8 Host Block PCIEN, HOSTBK
HD0/VLYNQ_SCRUN/AD18/GP[58] C8 B9 Host Block PCIEN, HOSTBK
HD1/VLYNQ_RXD0/AD16/GP[59] D7 C9 Host Block PCIEN, HOSTBK
HD2/VLYNQ_RXD1/AD17/GP[60] A8 A9 Host Block PCIEN, HOSTBK
HD3/VLYNQ_RXD2/ PCBE2/GP[61] B7 B8 Host Block PCIEN, HOSTBK
HD4/VLYNQ_RXD3/ PFRAME/GP[62] C7 C8 Host Block PCIEN, HOSTBK
HD5/VLYNQ_TXD0/ PIRDY/GP[63] A6 A7 Host Block PCIEN, HOSTBK
HD6/VLYNQ_TXD1/ PTRDY/GP[64] D6 C7 Host Block PCIEN, HOSTBK
HD7/VLYNQ_TXD2/ PDEVSEL/GP[65] B6 B7 Host Block PCIEN, HOSTBK
HD8/VLYNQ_TXD3/ PPERR/GP[66] A5 A6 Host Block PCIEN, HOSTBK
HD9/MCOL/ PSTOP/GP[67] C6 C6 Host Block PCIEN, HOSTBK
HD10/MCRS/ PSERR/GP[68] B5 B6 Host Block PCIEN, HOSTBK
HD11/MTXD3/ PCBE1/GP[69] C5 A5 Host Block PCIEN, HOSTBK
HD12/MTXD2/PPAR/GP[70] D5 C5 Host Block PCIEN, HOSTBK
HD13/MTXD1/AD14/GP[71] B4 B4 Host Block PCIEN, HOSTBK
HD14/MTXD0/AD15/GP[72] D4 B5 Host Block PCIEN, HOSTBK
HD15/MTXCLK/AD12/GP[73] A4 A4 Host Block PCIEN, HOSTBK
HHWIL/MRXDV/AD13/GP[74] C4 D3 Host Block PCIEN, HOSTBK
HCNTL1/MTXEN/AD11/GP[75] D3 C4 Host Block PCIEN, HOSTBK
HCNTL0/MRXER/AD10/GP[76] B3 B2 Host Block PCIEN, HOSTBK
HR/ W/MRXCLK/AD8/GP[77] A3 A3 Host Block PCIEN, HOSTBK
HDS2/MRXD0/AD9/GP[78] C3 C2 Host Block PCIEN, HOSTBK
HDS1/MRXD1/AD7/GP[79] B2 B3 Host Block PCIEN, HOSTBK
HRDY/MRXD2/ PCBE0/GP[80] D2 C3 Host Block PCIEN, HOSTBK
HCS/MDCLK/AD5/GP[81] C1 D1 Host Block PCIEN, HOSTBK
HINT/MRXD3/AD6/GP[82] C2 D2 Host Block PCIEN, HOSTBK
HAS/MDIO/AD3/GP[83] D1 C1 Host Block PCIEN, HOSTBK
AD0/GP[0] E1 E1 GPIO Block PCIEN
AD1/GP[1] E2 E2 GPIO Block PCIEN
AD2/GP[2] E3 F1 GPIO Block PCIEN
AD4/GP[3] E4 F2 GPIO Block PCIEN
GP[4]/PWM1 F3 F3 PWM1Block PWM1BK
ACLKR0/CLKX0/GP[99] H1 J1 Serial Port Sub-Block 0 SPBK0
AFSR0/DR0/GP[100] H4 K3 Serial Port Sub-Block 0 SPBK0
AHCLKR0/CLKR0/GP[101] J2 K1 Serial Port Sub-Block 0 SPBK0
AXR0[3]/FSR0/GP[102] G4 J3 Serial Port Sub-Block 0 SPBK0
AXR0[2]/FSX0/GP[103] H3 J2 Serial Port Sub-Block 0 SPBK0
AXR0[1]/DX0/GP[104] J3 K2 Serial Port Sub-Block 0 SPBK0
AXR0[0]/FSR1/GP[105] H2 H2 Serial Port Sub-Block 1 SPBK1
ACLKX0/CLKX1/GP[106] F1 G1 Serial Port Sub-Block 1 SPBK1
AFSX0/DX1/GP[107] G2 G2 Serial Port Sub-Block 1 SPBK1
AHCLKX0/CLKR1/GP[108] G1 H1 Serial Port Sub-Block 1 SPBK1
AMUTEIN0/FSX1/GP[109] F2 G3 Serial Port Sub-Block 1 SPBK1
AMUTE0/DR1/GP[110] G3 H3 Serial Port Sub-Block 1 SPBK1
HECC_RX/TINP1L/URXD1/GP[56] L4 P3 Timer 1 Block TIM1BK
Submit Documentation Feedback Device Configurations 113
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-21. Multiplexed Pins on DM6437 (continued)
SIGNAL PINMUX DESCRIPTION
ZWT ZDUNAME PINMUX GROUP CONTROLLED BY PINMUX BIT FIELDSNO. NO.
HECC_TX/TOUT1L/UTXD1/GP[55] K4 N3 Timer 1 Block TIM1BK
CLKS1/TINP0L/GP[98] K2 L2 Timer 0 Block TIM0BK
CLKS0/TOUT0L/GP[97] J4 L3 Timer 0 Block TIM0BK
URXD0/GP[85] L2 M2 UART0 Data Block UR0DBK
UTXD0/GP[86] K3 N1 UART0 Data Block UR0DBK
UCTS0/GP[87] L1 P1 UART0 Flow Control Block UR0FCBK
URTS0/PWM0/GP[88] L3 M3 UART0 Flow Control Block UR0FCBK
CLKOUT0/PWM2/GP[84] M1 R1 CLKOUT Block CKOBK
Note: PINMUX groups EMIFA/VPSS Sub-Block 2 and PCI Data Block are not shown in the above tablebecause there is no actual pin multiplexing in those blocks. But these two blocks are still considered "pinmux blocks" because they contain some of the pins necessary for EMIFA and PCI, respectively. The pinsin these blocks are as follows:EMIFA/VPSS Sub-Block 2
– EM_WAIT/(RDY/ BSY)
– EM_OE
– EM_WE
PCI Data Block
– AD30
– AD28
– AD26
Device Configurations114 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.7.3.2 Peripherals Spanning Multiple Pin Mux Blocks
3.7.3.3 Host Block Muxing
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Some peripherals span multiple Pin Mux Blocks. To use these peripherals, they must be selected in all ofthe relevant Pin Mux Blocks. The following is the list of peripherals that span multiple Pin Mux Blocks:PCI: PCI pins span across the Host Block, EMIFA/VPSS Block Sub-Block 0 and Sub-Block 3, PCIData Block, and GPIO Block. To select PCI pins, program PINMUX registers as follows:
Host Block: PCIEN = 1, HOSTBK = 000
EMIFA/VPSS Block: Select either Major Configuration Option F or G. For more details on thePINMUX settings associated with Major Configuration Options F or G, see Section 3.7.3.13 ,EMIFA/VPSS BLock Muxing.
PCI Data Block: PCIEN = 1
GPIO Block: PCIEN = 1McBSP0: Six McBSP0 pins are located in the Serial Port Sub-Block 0, but the CLKS0 pin is muxed inthe Timer0 Block. To select McBSP0 pins, program PINMUX registers as follows:
Serial Port Sub-Block 0: SPBK0 = 01
Timer0 Block: If CLKS0 pin is desired, program TIM0BK = 10 or 11.McBSP1: Six McBSP1 pins are located in the Serial Port Sub-Block 1, but the CLKS1 pin is muxed inthe Timer0 Block. To select McBSP1 pins, program PINMUX registers as follows:
Serial Port Sub-Block 1: SPBK1 = 01 (if both McBSP1 transmit and receive pins are needed) or11 (if only McBSP1 transmit pins are needed)
Timer0 Block: If CLKS1 pin is desired, program TIM0BK = 10.UART0: The two UART0 data pins are located in the UART0 Data Block, but the two UART0 flowcontrol pins are located in the UART0 Flow Control Block. To select UART0, program PINMUXregisters as follows:
UART0 Data Block: UR0BK = 1
UART0 Flow Control Block: If flow control pins are desired, program UR0FCBK = 01.
This block of 27 pins consists of PCI, HPI, VLYNQ, EMAC, MDIO, and GPIO muxed pins. The followingregister fields select the pin functions in the Host Block:PINMUX1.PCIEN
PINMUX1.HOSTBK
Table 3-22 summarizes the 27 pins in the Host Block, the multiplexed function on each pin, and thePINMUX configurations to select the corresponding function.
Submit Documentation Feedback Device Configurations 115
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-22. Host Block Muxed Pins Selection
MULTIPLEXED FUNCTIONS
SIGNAL NAME HPI EMAC/MDIO VLYNQ PCI GPIO
FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
PCIEN = 0,andHOSTBK = 000VLYNQ_CLOCK/PCICLK/GP[57] – – – VLYNQ_CLOCK PCICLK GP[57] orHOSTBK = 001orHOSTBK = 100
HD0/VLYNQ_SCRUN/AD18/GP[58] HD0 – VLYNQ_SCRUN AD18 GP[58]PCIEN = 0,HD1/VLYNQ_RXD0/AD16/GP[59] HD1 – VLYNQ_RXD0 and AD16 GP[59]HOSTBK = 010HD2/VLYNQ_RXD1/AD17/GP[60] HD2 – VLYNQ_RXD1 AD17 GP[60]or
PCIEN = 0,HOSTBK = 011HD3/VLYNQ_RXD2/ PCBE2/GP[61] HD3 – VLYNQ_RXD2 PCBE2 GP[61]
andHD4/VLYNQ_RXD3/ PFRAME/GP[62] HD4 VLYNQ_RXD3 PFRAME GP[62] HOSTBK = 000orHD5/VLYNQ_TXD0/ PIRDY/GP[63] HD5 – VLYNQ_TXD0 PIRDY GP[63]
HOSTBK = 100
HD6/VLYNQ_TXD1/ PTRDY/GP[64] HD6 – VLYNQ_TXD1 PTRDY GP[64]
HD7/VLYNQ_TXD2/ PDEVSEL/GP[65] HD7 – VLYNQ_TXD2 PDEVSEL GP[65]
HD8/VLYNQ_TXD3/ PPERR/GP[66] HD8 – VLYNQ_TXD3 PPERR GP[66]
HD9/MCOL/ PSTOP/GP[67] HD9 MCOL – PSTOP GP[67]PCIEN = 1,HD10/MCRS/ PSERR/GP[68] HD10 MCRS – PSERR GP[68]andHOSTBK = 000HD11/MTXD3/ PCBE1/GP[69] HD11 MTXD3 – PCBE1 GP[69]
PCIEN = 0,HD12/MTXD2/PPAR/GP[70] HD12 MTXD2 – PPAR GP[70]andHD13/MTXD1/AD14/GP[71] HD13 MTXD1 – AD14 GP[71]HOSTBK = 001
HD14/MTXD0/AD15/GP[72] HD14 MTXD0 – AD15 GP[72]
HD15/MTXCLK/AD12/GP[73] HD15 MTXCLK – AD12 GP[73]
PCIEN = 0, PCIEN = 0,HHWIL/MRXDV/AD13/GP[74] HHWIL MRXDV – AD13 GP[74]and andHCNTL1/MTXEN/AD11/GP[75] HCNTL1 MTXEN HOSTBK = 011 AD11 GP[75] HOSTBK = 000or orHCNTL0/MRXER/AD10/GP[76] HCNTL0 MRXER – AD10 GP[76]HOSTBK = 100 HOSTBK = 010
HR/ W/MRXCLK/AD8/GP[77] HR/ W MRXCLK AD8 GP[77]
HDS2/MRXD0/AD9/GP[78] HDS2 MRXD0 – AD9 GP[78]
HDS1/MRXD1/AD7/GP[79] HDS1 MRXD1 – AD7 GP[79]
HRDY/MRXD2/ PCBE0/GP[80] HRDY MRXD2 – PCBE0 GP[80]
HCS/MDCLK/AD5/GP[81] HCS MDCLK – AD5 GP[81]
HINT/MRXD3/AD6/GP[82] HINT MRXD3 – AD6 GP[82]
HAS/MDIO/AD3/GP[83] HAS MDIO – AD3 GP[83]
116 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
As discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, PCI pins span across thefollowing Pin Mux Blocks: Host Block, EMIFA/VPSS Block Sub-Block 0 and Sub-Block 3, PCI Data Block,and GPIO Block. For proper PCI operation, PCI must be selected in all of these Pin Mux Blocks.
Table 3-23 provides a different view of the Host Block pin muxing, showing the Host Block function basedon PINMUX1 settings. The selection options are also shown pictorially in Figure 3-11 .
If EMAC operation is desired, EMAC must be placed in reset before programming PINMUX1.HOSTBK toselect EMAC pins.
Table 3-23. Host Block Function Selection
PINMUX1 SETTING
BLOCK FUNCTION RESULTING PIN FUNCTIONSPCIEN
(1)
HOSTBK
PCI: PCICLK, PCBE2, PCBE1, PCBE0, PFRAME, PIDRDY, PTRDY,PCI1 000 PDEVSEL, PSTOP, PPER, PSERR, PPAR, AD[18:05], AD[03](Default if PCIEN = 1)
Internal pullup/pulldown on all these pins are disabled.
1 001 to 111 Reserved Reserved
GPIO (27)0 000
GPIO: GP[83:57](Default if PCIEN = 0)
HPI: HHWIL, HCNTL[1:0], HR/ W, HDS2, HDS1, HRDY, HCS, HINT, HAS,0 001 HPI + GPIO (1) HD[15:0]
GPIO: GP[57]
VLYNQ: VLYNQ_CLOCK, VLYNQ_SCRUN, VLYNQ_RXD[3:0],VLYNQ_TXD[3:0]0 010 VLYNQ + GPIO (17)
GPIO: GP[83:67]
VLYNQ: VLYNQ_CLOCK, VLYNQ_SCRUN, VLYNQ_RXD[3:0],VLYNQ_TXD[3:0]
EMAC (MII): TXCLK, CRS, COL, TXD[3:0], RXDV, TXEN, RXER, RXCLK,0 011 VLYNQ + EMAC (MII) + MDIO RXD[3:0]
MDIO: MDC, MDIO
If EMAC operation is desired, EMAC must be placed in reset beforeprogramming PINMUX1.HOSTBK to select EMAC pins.
EMAC (MII): TXCLK, CRS, COL, TXD[3:0], RXDV, TXEN, RXER, RXCLK,RXD[3:0]
MDIO: MDC, MDIO0 100 EMAC (MII) + MDIO + GPIO (10)
GPIO: GP[66:57]
If EMAC operation is desired, EMAC must be placed in reset beforeprogramming PINMUX1.HOSTBK to select EMAC pins.
0 101 to 111 Reserved Reserved
(1) If PCIEN = 1, the internal pullup/pulldown on all Host Block pins are disabled. If PCIEN = 0, the internal pullup/pulldown on all HostBlock pins are enabled.
The PINMUX1.PCIEN field is read-only, and its setting is determined by the PCIEN configuration pin.Based on the PCIEN configuration pin setting, the 27 pins in the Host Block defaults to either PCI or GPIOfunction.
In addition, the VDD3P3V_PWDN.HOST field determines the power state of the Host Block pins. TheHost Block pins default to powered up. For more details on the VDD3P3V_PWDN.HOST field, seeSection 3.2 ,Power Considerations.
Submit Documentation Feedback Device Configurations 117
l TEXAS INSTRUMENTS
3.7.3.4 PCI Data Block
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
This block of 3 pins consists of 3 PCI Address/Data pins—AD30, AD28, AD26. The PINMUX1.PCIENregister field affects the pin functions in the PCI Data Block.
As discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, PCI pins span across thefollowing Pin Mux Blocks: Host Block, EMIFA/VPSS Block Sub-Block 0 and Sub-Block 3, PCI Data Block,and GPIO Block. For proper PCI operation, PCI must be selected in all of these Pin Mux Blocks.
The 3 pins in the PCI Data Block are not muxed with any other peripherals. However, thePINMUX1.PCIEN field controls the internal pullup/pulldown resistors on these pins. For PCI operation(PCIEN = 1), the internal pullup/pulldown resistors are disabled. If the device does not support PCI(PCIEN = 0), the internal pullup/pulldown resistors on these pins are enabled so that the user can leavethese pins unconnected on the board.
Table 3-24 shows the Host Block pin selection based on PINMUX1.PCIEN setting.
Table 3-24. PCI Data Block Pin Control
PINMUX1.PCIEN BLOCK FUNCTION RESULTING PIN FUNCTIONS
No Connect Pins No Connect Pins0
(Default if PCIEN = 0) Internal pullup/pulldown enabled. Leave these three pins unconnected on the board.
PCI1PCI: AD26, AD28, AD30(Default if PCIEN = 1)
Device Configurations118 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.7.3.5 GPIO Block Muxing
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
This block of 4 pins consists of PCI and GPIO muxed pins. The PINMUX1.PCIEN register field selects thepin functions in the GPIO Block.
Table 3-25 summarizes the 4 pins in the GPIO Block, the multiplexed function on each pin, and thePINMUX configurations to select the corresponding function.
Table 3-25. GPIO Block Muxed Pins Selection
MULTIPLEXED FUNCTIONSSIGNAL
PCI GPIO
NAME FUNCTION SELECT FUNCTION SELECT
AD0/GP[0] AD0 GP[0]
AD1/GP[1] AD1 GP[1]PCIEN = 1
(1)
PCIEN = 0
(1)
AD2/GP[2] AD2 GP[2]
AD4/GP[3] AD4 GP[3]
(1) If PCIEN = 1, the internal pullup/pulldown on all GPIO Block pins are disabled. If PCIEN = 0, the internal pullup/pulldown on all GPIOBlock pins are enabled.
As discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, PCI pins span across thefollowing Pin Mux Blocks: Host Block, EMIFA/VPSS Block Sub-Block 0 and Sub-Block 3, PCI Data Block,and GPIO Block. For proper PCI operation, PCI must be selected in all of these Pin Mux Blocks.
Table 3-26 provides a different view of the GPIO Block pin muxing, showing the GPIO Block functionbased on PINMUX1.PCIEN setting. The selection options are also shown pictorially in Figure 3-11 .
Table 3-26. GPIO Block Function Selection
PINMUX1.PCIEN BLOCK FUNCTION RESULTING PIN FUNCTIONS
PCI0PCI: AD0, AD1, AD2, AD4(Default if PCIEN = 1)
GPIO (4)1GPIO: GP[3:0](Default if PCIEN = 0)
The PINMUX1.PCIEN field is read-only, and its setting is determined by the PCIEN configuration pin.Based on the PCIEN configuration pin setting, the 4 pins in the GPIO Block defaults to either PCI or GPIOfunction.
In addition, the VDD3P3V_PWDN.GPIO field determines the power state of the GPIO Block pins. TheGPIO Block pins default to powered up. For more details on the VDD3P3V_PWDN.GPIO field, seeSection 3.2 ,Power Considerations.
Submit Documentation Feedback Device Configurations 119
l TEXAS INSTRUMENTS
3.7.3.6 UART0 Data Block Muxing
3.7.3.7 UART0 Flow Control Block
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
This block of 2 pins consists of UART0 Data and GPIO muxed pins. The PINMUX1.UR0DBK register fieldselect the pin functions in the UART0 Data Block.
Table 3-27 summarizes the 2 pins in the UART0 Data Block, the multiplexed function on each pin, and thePINMUX configurations to select the corresponding function.
Table 3-27. UART0 Data Block Muxed Pins Selection
MULTIPLEXED FUNCTIONSSIGNAL
UART0 GPIO
NAME FUNCTION SELECT FUNCTION SELECT
URXD0/GP[85] URXD0 GP[85]UR0DBK = 1 UR0DBK = 0UTXD0/GP[86] UTXD0 GP[86]
As discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, the UART0 pins spanacross two Pin Mux Blocks: UART0 Data Block, and UART0 Flow Control Block. For proper UART0operation, the two pins in the UART0 Data Block must be configured for UART0 data functions. The twopins in the UART0 Flow Control Block are optional.
Table 3-28 provides a different view of the UART0 Data Block pin muxing, showing the UART0 Data Blockfunction based on PINMUX1.UR0DBK setting. The selection options are also shown pictorially inFigure 3-11 .
Table 3-28. UART0 Data Block Function Selection
PINMUX1.UR0DBK BLOCK FUNCTION RESULTING PIN FUNCTIONS
0 GPIO (2) ( default)GPIO: GP[86:85]
1 UART0 Data UART0: URXD0, UTXD0
In addition, the VDD3P3V_PWDN.UR0DAT field determines the power state of the UART0 Data Blockpins. The UART0 Data Block pins default to powered down and not operational. To use these pins, usermust first program VDD3P3V_PWDN.UR0DAT = 0 to power up the pins. For more details on theVDD3P3V_PWDN.UR0DAT field, see Section 3.2 ,Power Considerations.
The UART0 Data Block features internal pullup resistors, which matches the UART inactive polarity.
This block of 2 pins consists of UART0 Flow Control, PWM0, and GPIO muxed pins. ThePINMUX1.UR0FCBK register field selects the pin functions in the UART0 Flow Control Block.
Table 3-29 summarizes the 2 pins in the UART0 Flow Control Block, the multiplexed function on each pin,and the PINMUX configurations to select the corresponding function.
Table 3-29. UART0 Flow Control Block Muxed Pins Selection
MULTIPLEXED FUNCTIONSSIGNAL
UART0 PWM0 GPIO
NAME FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
UCTS0/
UCTS0 GP[87] UR0FCBK = 00/10GP[87]
UR0FCBK = 01URTS0/
PWM0/ URTS0 PWM0 UR0FCBK = 10 GP[88] UR0FCBK = 00GP[88]
Device Configurations120 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
As discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, the UART0 pins spanacross two Pin Mux Blocks: UART0 Data Block, and UART0 Flow Control Block. For proper UART0operation, the two pins in the UART0 Data Block must be configured for UART0 data functions. The twopins in the UART0 Flow Control Block are optional.
Table 3-30 provides a different view of the UART0 Flow Control Block pin muxing, showing the UART0Flow Control Block function based on PINMUX1.UR0FCBK setting. The selection options are also shownpictorially in Figure 3-11 .
Table 3-30. UART0 Flow Control Block Function Selection
PINMUX1.UR0FCBK BLOCK FUNCTION RESULTING PIN FUNCTIONS
00 GPIO (2) ( default)GPIO: GP[88:87]
01 UART0 Flow Control UART0: UCTS0, URTS0
PWM0: PWM010 PWM0 + GPIO (1)
GPIO: GP[87]
11 Reserved Reserved
In addition, the VDD3P3V_PWDN.UR0FC field determines the power state of the UART0 Flow ControlBlock pins. The UART0 Flow Control Block pins default to powered down and not operational. To usethese pins, user must first program VDD3P3V_PWDN.UR0FC = 0 to power up the pins. For more detailson the VDD3P3V_PWDN.UR0FC field, see Section 3.2 ,Power Considerations.
The UART0 Flow Control Block features internal pullup resistors, which matches the UART inactivepolarity.
Submit Documentation Feedback Device Configurations 121
l TEXAS INSTRUMENTS
3.7.3.8 Timer0 Block
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
This block of 2 pins consists of Timer0, McBSP0, McBSP1, and GPIO muxed pins. ThePINMUX1.TIM0BK register field selects the pin functions in the Timer0 Block.
Table 3-31 summarizes the 2 pins in the Timer0 Block, the multiplexed function on each pin, and thePINMUX configurations to select the corresponding function.
Table 3-31. Timer0 Block Muxed Pins Selection
MULTIPLEXED FUNCTIONSSIGNAL
McBSP Timer0 GPIO
NAME FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
CLKS1/
TINP0L/ CLKS1 TIM0BK = 10 TINP0L TIM0BK = 01/11 GP[98]GP[98]
TIM0BK = 00CLKS0/
TOUT0L/ CLKS0 TIM0BK = 10/11 TOUT0L TIM0BK = 01 GP[97]GP[97]
As discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, the McBSP0 pins spanacross two Pin Mux Blocks: Serial Port Sub-Block0, and Timer0 Block. For proper McBSP0 operation, theSerial Port Sub-Block0 must be programmed to select McBSP0 function. The McBSP0 CLKS0 pin in theTimer0 Block is optional for McBSP0 operation. CLKS0 is only needed if you desire using CLKS0 as anexternal clock source to the McBSP0 internal sample rate generator.
Similarly, as discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, the McBSP1pins span across two Pin Mux Blocks: Serial Port Sub-Block1, and Timer0 Block. For proper McBSP1operation, the Serial Port Sub-Block1 must be programmed to select McBSP1 function. The McBSP1CLKS1 pin in the Timer0 Block is optional for McBSP1 operation. CLKS1 is only needed if you desireusing CLKS1 as an external clock source to the McBSP1 internal sample rate generator.
Table 3-32 provides a different view of the Timer0 Block pin muxing, showing the Timer0 Block functionbased on PINMUX1.TIM0BK setting. The selection options are also shown pictorially in Figure 3-11 .
Table 3-32. Timer0 Block Function Selection
PINMUX1.TIM0BK BLOCK FUNCTION RESULTING PIN FUNCTIONS
00 GPIO (2) ( default)GPIO: GP[98:97]
01 Timer0 Timer0: TINP0L, TOUT0L
McBSP0 External Clock Source, McBSP0: CLKS010
McBSP1 External Clock Source McBSP1: CLKS1
McBSP0 External Clock Source, McBSP0: CLKS011
Timer0 Input Timer0: TINP0L
In addition, the VDD3P3V_PWDN.TIMER0 field determines the power state of the Timer0 Block pins. TheTimer0 Block pins default to powered down and not operational. To use these pins, user must firstprogram VDD3P3V_PWDN.TIMER0 = 0 to power up the pins. For more details on theVDD3P3V_PWDN.TIMER0 field, see Section 3.2 ,Power Considerations.
Device Configurations122 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.7.3.9 Timer1 Block
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
This block of 2 pins consists of Timer1, HECC, UART1 Data, and GPIO muxed pins. ThePINMUX1.TIM1BK register field selects the pin functions in the Timer1 Block.
Table 3-33 summarizes the 2 pins in the Timer1 Block, the multiplexed function on each pin, and thePINMUX configurations to select the corresponding function.
Table 3-33. Timer1 Block Muxed Pins Selection
MULTIPLEXED FUNCTIONSSIGNAL
HECC TIMER1 UART1 GPIONAME
FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
HECC_RX/
TINP1L/
HECC_RX TINP1L URXD1 GP[56]URXD1/
GP[56]
TIM1BK = 11 TIM1BK = 01 TIM1BK = 10 TIM1BK = 00HECC_TX/
TOUT1L/
HECC_TX TOUT1L UTXD1 GP[55]UTXD1/
GP[55]
Unlike UART0, UART1 only supports data pins but not flow control pins.
Table 3-34 provides a different view of the Timer1 Block pin muxing, showing the Timer1 Block functionbased on PINMUX1.TIM1BK setting. The selection options are also shown pictorially in Figure 3-11 .
Table 3-34. Timer1 Block Function Selection
PINMUX1.TIM1BK BLOCK FUNCTION RESULTING PIN FUNCTIONS
00 GPIO (2) ( default)GPIO: GP[56:55]
01 Timer1 Timer1: TINP1L, TOUT1L
10 UART1 Data UART1: URXD1, UTXD1
11 HECC HECC: HECC_RX, HECC_TX
In addition, the VDD3P3V_PWDN.TIMER1 field determines the power state of the Timer1 Block pins. TheTimer1 Block pins default to powered down and not operational. To use these pins, user must firstprogram VDD3P3V_PWDN.TIMER1 = 0 to power up the pins. For more details on theVDD3P3V_PWDN.TIMER1 field, see Section 3.2 ,Power Considerations.
The Timer1 Block features internal pull up resistors, which matches the UART and HECC inactive polarity.
Submit Documentation Feedback Device Configurations 123
l TEXAS INSTRUMENTS
3.7.3.10 Serial Port Block
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
This block of 12 pins consists of McASP0, McBSP0, McBSP1, and GPIO muxed pins. The followingregister fields select the pin functions in the Serial Port Block:PINMUX1.SPBK0
PINMUX1.SPBK1
The Serial Port Block is further subdivided into these sub-blocks:Serial Port Sub-Block 0: McBSP0, part of McASP0, GPIO.Serial Port Sub-Block 1: McBSP1, part of McASP0, GPIO.
Table 3-35 summarizes the 12 pins in the Serial Port Block, the multiplexed function on each pin, and thePINMUX configurations to select the corresponding function.
Table 3-35. Serial Port Block Muxed Pins Selection
MULTIPLEXED FUNCTIONS
SIGNAL NAME McASP0 McBSP0/1 GPIO
FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
Serial Port Sub-block 0
ACLKR0/CLKX0/GP[99] ACLKR0 CLKX0 GP[99]
AFSR0/DR0/GP[100] AFSR0 DR0 GP[100]
AHCLKR0/CLKR0/GP[101] AHCLKR0 CLKR0 GP[101]SPBK0 = 10 SPBK0 = 01 SPBK0 = 00AXR0[3]/FSR0/GP[102] AXR0[3] FSR0 GP[102]
AXR0[2]/FSX0/GP[103] AXR0[2] FSX0 GP[103]
AXR0[1]/DX0/GP[104] AXR0[1] DX0 GP[104]
Serial Port Sub-block 1
AXR0[0]/FSR1/GP[105] AXR0[0] SPBK1 = 10/11 FSR1 SPBK1 = 01 GP[105]
ACLKX0/CLKX1/GP[106] SPBK1 =ACLKX0 SPBK1 = 10 CLKX1 GP[106]01/11
AFSX0/DX1/GP[107] SPBK1 =AFSX0 SPBK1 = 10 DX1 GP[107]01/11
SPBK1 = 00
AHCLKX0/CLKR1/GP[108] AHCLKX0 SPBK1 = 10/11 CLKR1 SPBK1 = 01 GP[108]
AMUTEIN0/FSX1/GP[109] SPBK1 =AMUTEIN0 SPBK1 = 10 FSX1 GP[109]01/11
AMUTE0/DR1/GP[110] AMUTE0 SPBK1 = 10/11 DR1 SPBK1 = 01 GP[110]
As discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, the McBSP0 pins spanacross two Pin Mux Blocks: Serial Port Sub-Block0, and Timer0 Block. For proper McBSP0 operation, theSerial Port Sub-Block0 must be programmed to select McBSP0 function. The McBSP0 CLKS0 pin in theTimer0 Block is optional for McBSP0 operation. CLKS0 is only needed if you desire using CLKS0 as anexternal clock source to the McBSP0 internal sample rate generator.
Similarly, as discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, the McBSP1pins span across two Pin Mux Blocks: Serial Port Sub-Block1, and Timer0 Block. For proper McBSP1operation, the Serial Port Sub-Block1 must be programmed to select McBSP1 function. The McBSP1CLKS1 pin in the Timer0 Block is optional for McBSP1 operation. CLKS1 is only needed if you desireusing CLKS1 as an external clock source to the McBSP1 internal sample rate generator.
Table 3-36 and Table 3-37 provide a different view of the Serial Port Block. Table 3-36 shows the SerialPort Sub-Block 0 function based on PINMUX1.SPBK0 setting. Table 3-37 shows the Serial Port Sub-Block1 function based on PINMUX1.SPBK1 setting. These selection options are also shown pictorially inFigure 3-11 .
Device Configurations124 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-36. Serial Port Sub-Block 0 Function Selection
PINMUX1.SPBK0 BLOCK FUNCTION RESULTING PIN FUNCTIONS
00 GPIO (6) ( default)GPIO: GP[104:99]
01 McBSP0 McBSP0: CLKX0, FSX0, DX0, CLKR0, FSR0, DR0
McASP0: ACLKR0, AFSR0, AHCLKR0, AXR0[3],10 McASP0 Receive, 3 Serializers
AXR0[2], AXR0[1]
11 Reserved Reserved
Table 3-37. Serial Port Sub-Block 1 Function Selection
PINMUX1.SPBK1 BLOCK FUNCTION RESULTING PIN FUNCTIONS
00 GPIO (6) ( default)GPIO: GP[110:105]
01 McBSP1 McBSP1: CLKX1, FSX1, DX1, CLKR1, FSR1, DR1
McASP0 Transmit with 1 Serializer and McASP0: AXR0[0], ACLKX0, AFSX0, AHCLKX0,10
Mute Control AMUTEIN0
(1)
, AMUTE0
McBSP1: CLKX1, FSX1, DX111 McBSP1 Transmit, McASP0 SPDIF
McASP0: AXR0[0], AHCLKX0, AMUTE0
(1) The input from the AMUTEIN0/FSX1/GP[109] pin is connected to both the McASP0 and GPIO.
In addition, the VDD3P3V_PWDN.SP field determines the power state of the Serial Port Block pins. TheSerial Port Block pins default to powered down and not operational. To use these pins, user must firstprogram VDD3P3V_PWDN.SP = 0 to power up the pins. For more details on the VDD3P3V_PWDN.SPfield, see Section 3.2 ,Power Considerations.
To facilitate McASP0 operation, the input from the AMUTEIN0/FSX1/GP[109] pin is connected to both theMcASP0 and the GPIO module. Therefore when an external mute event occurs, in addition to notifying theMcASP0, it can also cause an interrupt through the GPIO module.
Submit Documentation Feedback Device Configurations 125
l TEXAS INSTRUMENTS
3.7.3.11 PWM1 Block
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
This block of 1 pin consists of PWM1 and GPIO muxed pins (GP[4]/PWM1). The PINMUX1.PWM1BKregister field selects the pin function in the PWM1 Block.
Table 3-38 summarizes the 1 pin in the PWM1 Block, its multiplexed function, and the PINMUXconfigurations to select the corresponding function.
Table 3-38. PWM1 Block Muxed Pin Selection
MULTIPLEXED FUNCTIONSSIGNAL
PWM1 GPIO
NAME FUNCTION SELECT FUNCTION SELECT
GP[4]/PWM1 PWM1 PWM1BK = 1 GP[4] PWM1BK = 0
Table 3-39 provides a different view of the PWM1 Block pin muxing, showing the PWM1 Block functionbased on PINMUX1.PWM1BK setting. The selection options are also shown pictorially in Figure 3-11 .
Table 3-39. PWM1 Block Function Selection
PINMUX1.PWM1BK BLOCK FUNCTION RESULTING PIN FUNCTIONS
0 GPIO (1) ( default)GPIO: GP[4]
1 PWM1 PWM1: PWM1
In addition, the VDD3P3V_PWDN.PWM1 field determines the power state of the PWM1 Block pin. ThePWM1 Block pin defaults to powered down and not operational. To use this pin, user must first programVDD3P3V_PWDN.PWM1 = 0 to power up the pin. For more details on the VDD3P3V_PWDN.PWM1 field,see Section 3.2 ,Power Considerations.
Device Configurations126 Submit Documentation Feedback
l TEXAS INSTRUMENTS
3.7.3.12 CLKOUT Block
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
This block of 1 pin consists of CLKOUT, PWM2, and GPIO muxed pin (CLKOUT0/PWM2/GP[84]). ThePINMUX1.CKOBK register field selects the pin function in the CLKOUT Block.
Table 3-40 summarizes the 1 pin in the CLKOUT Block, its multiplexed function, and the PINMUXconfigurations to select the corresponding function.
Table 3-40. CLKOUT Block Multiplexed Pin Selection
MULTIPLEXED FUNCTIONSSIGNAL
CLKOUT0 PWM2 GPIO
NAME FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
CLKOUT0/
PWM2/ CLKOUT0 CKOBK = 01 PWM2 CKOBK = 10 GP[84] CKOBK = 00GP[84]
Table 3-41 provides a different view of the CLKOUT Block pin muxing, showing the CLKOUT Blockfunction based on PINMUX1.CKOBK setting. The selection options are also shown pictorially inFigure 3-11 .
Table 3-41. CLKOUT Block Function Selection
PINMUX1.CKOBK BLOCK FUNCTION RESULTING PIN FUNCTIONS
00 GPIO (1) GPIO: GP[84]
01 CLKOUT ( default)Device Clock-Out: CLKOUT0
10 PWM2 PWM2: PWM2
11 Reserved Reserved
This block defaults to CLKOUT0 pin function.
In addition, the VDD3P3V_PWDN.CLKOUT field determines the power state of the CLKOUT Block pin.The CLKOUT Block pin defaults to powered up. For more details on the VDD3P3V_PWDN.CLKOUT field,see Section 3.2 ,Power Considerations.
Submit Documentation Feedback Device Configurations 127
l TEXAS INSTRUMENTS
3.7.3.13 EMIFA/VPSS Block Muxing
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
This block of 61 pins consists of VPSS, EMIFA, PCI, and GPIO muxed pins. The following register fieldsaffect the pin functions in the EMIFA/VPSS Block:All PINMUX0 register fields: AEM, VENCSEL, CS5SEL, CS4SEL, CS3SEL, RGBSEL, VPBECKEN,AEAW, CCDCSEL, HVDSEL, CWENSEL, CFLDSEL, CI76SEL, CI54SEL, CI32SEL, CI10SELPINMUX1.PCIEN
The EMIFA/VPSS Block is divided into multiple sub-blocks for ultimate flexibility in pin multiplexing toaccommodate a wide variety of applications:Sub-Block 0: multiplexed between VPFE, EMIFA data/address/control pins, PCI, and GPIO.Sub-Block 1: multiplexed between VPBE, EMIFA data/address/control pins, and GPIO.Sub-Block 2: no multiplexing. EMIFA control pins EM_WAIT/(RDY/ BSY), EM_OE, EM_WE.Sub-Block 3: multiplexed between EMIFA address pins EM_A[12:6], PCI, and GPIO.
As discussed in Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks, PCI pins span across thefollowing Pin Mux Blocks: Host Block, EMIFA/VPSS Block Sub-Block 0 and Sub-Block 3, PCI Data Block,and GPIO Block. For proper PCI operation, PCI must be selected in all of these Pin Mux Blocks.
The EMBK0, EMBK1, EMBK2, EMBK3 fields in the VDD3P3V_PWDN register determine the power stateof the EMIFA/VPSS Block pins. The EMIFA/VPSS Block pins default to powered up. For more details onthe EMBK0, EMBK1, EMBK2, EMBK3 fields in the VDD3P3V_PWDN register, see Section 3.2 ,PowerConsiderations.
To understand pin multiplexing in the EMIFA/VPSS Block, the user should start with Section 3.7.3.13.1 ,EMIFA/VPSS Block Pin Selection Procedure, which outlines the procedures to select pin functions of thisblock. Section 3.7.3.13.7 ,EMIFA/VPSS Block Pin-By-Pin Multiplexing Summary, provides a pin-by-pinmultiplexing summary for the EMIFA/VPSS Block. For more information on the PINMUX0 and PINMUX1registers, see Section 3.7.2 ,Pin Muxing Selection After Device Reset.
3.7.3.13.1 EMIFA/VPSS Block Pin Selection Procedure
Follow the steps below to perform pin selection for the EMIFA/VPSS Block and its sub-blocks.
1. Major Configuration Options: start with Table 3-42 ,EMIFA/VPSS Block Major Configuration Choices.Based on the peripheral needs, the user should select from the major configuration options in thisblock: Major Config Options A, B, C, D, E, F, G.
2. Sub-Block 2 and Sub-Block 3 Selection: After selecting the major configuration option fromTable 3-42 ,EMIFA/VPSS Block Major Configuration Choices, the pin selection for Sub-Block 2 andSub-Block 3 is complete.
3. Sub-Block 0 Selection: Use Table 3-43 through Table 3-49 ,EMIFA/VPSS Sub-Block 0 ConfigurationChoices, to refine Sub-Block 0 pin selections.
a. Go to the table with the Major Configuration Option chosen in Step 1.b. Each Major Configuration Option is further divided down into multiple Minor Configuration Options.Select a Minor Configuration Option that best suits the application need.c. Within the chosen Minor Configuration Option, further refine the detailed pin configurations byselecting the settings of PINMUX0 fields CCDCSEL, HVDSEL, CWENSEL, CFLDSEL, CI10SEL,CI32SEL, CI54SEL, and CI76SEL.d. The Selection Fields columns show the settings needed to program the PINMUX0 register andPINMUX1.PCIEN field.
4. Sub-Block 1 Selection: Use Table 3-50 through Table 3-54 ,EMIFA/VPSS Sub-Block 1 ConfigurationChoices, to refine Sub-Block 1 pin selection.
a. Go to the table with the Major Configuration Option chosen in Step 1.b. Each Major Configuration Option is further divided down into multiple Minor Configuration Options.Select a Minor Configuration Option that best suits the application need.c. Within the chosen Minor Configuration Option, further refine the detailed pin configurations by
Device Configurations128 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
selecting the settings of PINMUX0 fields VENCSEL, RGBSEL, CS3SEL, CS4SEL, and CS5SEL.d. The Selection Fields columns shows the settings needed to program the PINMUX0 register.
After following the procedure in this section to determine pin functions for the EMIFA/VPSS Block, theuser should refer to Section 3.7.3.13.7 ,EMIFA/VPSS Block Pin-By-Pin Multiplexing Summary, forpin-multiplexing information on a pin-by-pin basis.
3.7.3.13.2 EMIFA/VPSS Block Major Configuration Choices
Table 3-42 shows the major configuration choices in the EMIFA/VPSS Block. For instructions on how touse the EMIFA/VPSS Block Major Configuration Choices table for the EMIFA/VPSS Block andSub-Blocks, see Section 3.7.3.13.1 .
Submit Documentation Feedback Device Configurations 129
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-42. EMIFA/VPSS Block Major Configuration Choices
PINMUX SELECTION FIELDS
(1)
RESULTING PERIPHERALS/PINSMAJOR
CONFIG.
VPBE AND # GP PINS VPFE AND # GP PINSPCIEN AEM VENCSEL CCDCSEL PCI
(2)
EMIFAOPTION
(FROM GP[33:5]) (FROM GP[54:34])
VENCSEL VPBE & # GP Pins CCDCSEL VPFE & # GP Pins
No VENC00
29 GP pins
No CCDC0
21 GP pins8-bit VENCA 0 000 00, 01, 10 0, 1 - - 01
8-to-29-GP pins
16-to-24-bit VENC 8-to-16-bit CCDC10 10-to-12 GP pins 0-to-12 GP pins
No VENC No CCDC8-bit EMIFA (ASYNC)
00 09-to-13 GP pins 11-to-19 GP pinsPinout Mode 1 with addressB 0 001
(3)
00, 01 0, 1 -
pins to support 32KB to 16MB
8-bit VENC
(3)
8-to-16-bit CCDC
(3)01
(3)
1
(3)per CS.
0-to-4 GP pins 0-to-10 GP pins
No VENC No CCDC8-bit EMIFA (ASYNC)
00 017-to-21 GP pins 12 GP pinsPinout Mode 3 with addressC 0 011
(3)
00, 10 0, 1 -
pins to support up to 32KB per
16-bit VENC
(3)
8-bit CCDC
(3)10
(3)
1
(3)CS.
0-to-4 GP pins 0-to-3 GP pins
No VENC00
22-to-26 GP pins
No CCDC0
13 GP pins8-bit EMIFA (NAND) 8-bit VENCD 0 100 00, 01, 10 0, 1 - 01Pinout Mode 4 12-to-17 GP pins
16-to-18-bit VENC 8-bit CCDC10 12-to-9 GP pins 0-to-4 GP pins
No VENC No CCDC00 014-to-18 GP pins 21 GP pins8-bit EMIFA (NAND)E 0 101 00, 01 0, 1 -
Pinout Mode 5
8- bit VENC 8-to-16-bit CCDC01 14-to-9 GP pins 0-to-12 GP pins
No VENC00
29 GP pins
No CCDC0
13 GP pins8-bit VENCF 1 000 00, 01, 10 0, 1 PCI - 01
8-to-29 GP pins
16-to-24-bit VENC 8-bit CCDC10 10-to-12 GP pins 0-to-4 GP pins
No VENC No CCDC00 014-to-18 GP pins 13 GP pins8-bit EMIFA (NAND)G 1 101 00, 01 0, 1 PCI
Pinout Mode 5
8-bit VENC 8-bit CCDC01 14-to-9 GP pins 0-to-4 GP pins
(1) For additional pin mux details for each Sub-Block, see Table 3-43 through Table 3-49 ,EMIFA/VPSS Sub-Block 0 Configuration Choices, and Table 3-50 through Table 3-54 ,EMIFA/VPSS Sub-Block 1 Configuration Choices.(2) PCI pins span across multiple Pin Mux Blocks (Section 3.7.3.2 ,Peripherals Spanning Multiple Pin Mux Blocks). This table only refers to the PCI pins in the EMIFA/VPSS Block.(3) If PINMUX0.AEM = 001 or 011, it is not possible to get LCD_FIELD pin for VPBE, nor C_WE pin for VPFE.
130 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
As shown in Table 3-42 , the major configuration choices of the EMIFA/VPSS Block are determined by thefollowing PINMUX register fields:PINMUX1 register field PCIENPINMUX0 register fields AEM, VENCSEL, CCDCSEL
Based on the peripheral needs, select from the major configuration options in this block: MajorConfiguration Options A, B, C, D, E, F, and G.
The following is an example on how to read Table 3-42 . For example, the "PINMUX Selection Fields"columns indicate that Major Configuration Choice B is selected through setting PINMUX1.PCIEN = 0,PINMUX0.AEM = 1, VENCSEL = 0 or 1 (based on the system's VPBE requirement), and CCDCSEL = 0or 1 (based on the system's VPFE requirement). The "Resulting Peripherals/Pins" columns indicate thatMajor Configuration Option B can support the following combination of pin functions:No PCI pinsPins for 8-bit EMIFA (Async or NAND) function. The number of address pins supported provide32KByte to 16MByte address reach per EMIFA Chip Select (CS) space.Pins for up to 8-bit VPBE. If 8-bit VPBE (VENCSEL = 1) is selected, the user may have 0 to 4 GPIOpins. Exact detail on number of GPIO pins and VPBE control pins is further determined by otherPINMUX0 settings discussed in the EMIFA/VPSS Sub-Block 1 Configuration Choices.Pins for up to 16-bit VPFE. If 8 to 16-bit VPFE (CCDCSEL = 1) is selected, the user may have 0 to 10GPIO pins. Exact detail on number of GPIO pins and VPFE control pins is furthered determined byother PINMUX0 settings discussed in the EMIFA/VPSS Sub-Block 0 Configuration Choices.
After using Table 3-42 to select the Major Configuration Option for the EMIFA/VPSS Block, proceed toselect the detailed pin choices in the EMIFA/VPSS Sub-Blocks.
Submit Documentation Feedback Device Configurations 131
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
3.7.3.13.3 EMIFA/VPSS Sub-Block 0 Configuration Choices
Table 3-43 through Table 3-49 show the configuration choices in the EMIFA/VPSS Sub-Block 0. Forinstructions on how to use the different configuration choices tables for the EMIFA/VPSS Block andSub-Blocks, see Section 3.7.3.13.1 .Note: Italics in these tables indicate mandatory settings for a givenMinor Configuration option.
Before using Table 3-43 through Table 3-49 to configure the details of the EMIFA/VPSS Sub-Block 0, theuser should first select a Major Configuration Option for the EMIFA/VPSS Block (see Section 3.7.3.13.2 ).After determining the Major Configuration Option (A, B, C, D, E, F, or G), the user can now use Table 3-43through Table 3-49 to refine Sub-Block 0 pin selections:
1. Go to the table with the Major Configuration Option chosen from Table 3-42 .
2. Each Major Configuration Option is further divided down into multiple Minor Configuration Options.Select a Minor Configuration Option that best suits the application need.
3. Within the chosen Minor Configuration Option, further refine the detailed pin configurations by selectingthe settings of PINMUX0 fields CCDCSEL, HVDSEL, CWENSEL, CFLDSEL, CI10SEL, CI32SEL,CI54SEL, and CI76SEL.
4. The PINMUX Selection Fields columns show the settings needed to program the PINMUX0 registerand PINMUX1.PCIEN field.
Table 3-43. EMIFA/VPSS Sub-Block 0 Configuration Choice A
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
PCIEN AEM AEAW OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
Cfg Summary No PCI No EMIFA No CCDC 21 GP pins
0 = GP[54,CCDCSEL = 0
43:36]
HVDSEL = 0 0 = GP[53:52]
CWENSEL = 0 0 = GP[35]A1 0 000 000
CFLDSEL = 0 0 = GP[34]- - -
CI10SEL = 0 0 = GP[45:44]
CI32SEL = 0 0 = GP[47:46]
CI54SEL = 0 0 = GP[49:48]
CI76SEL = 0 0 = GP[51:50]
A
8-to-16-bit 0-to-12 GPCfg Summary No PCI No EMIFA
CCDC pins
1 = PCLK,CCDCSEL = 1 -YI[7:0]
HVDSEL = 0,1 1 = VD, HD 0 = GP[53:52]
CWENSEL = 0,1 1 = C_WE 0 = GP[35]A2 0 000 000
CFLDSEL = 0,1 1 = C_FIELD 0 = GP[34]- -
CI10SEL = 0,1 1 = CI[1:0] 0 = GP[45:44]
CI31SEL = 0,1 1 = CI[3:2] 0 = GP[47:46]
CI54SEL = 0,1 1 = CI[5:4] 0 = GP[49:48]
CI76SEL = 0,1 1 = CI[7:6] 0 = GP[51:50]
(1) Italics indicate mandatory settings for a given Minor Configuration option.
132 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-44. EMIFA/VPSS Sub-Block 0 Configuration Choice B
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
PCIEN AEM AEAW OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
8-bit EMIFA(Async) PinoutConfig Summary No PCI No CCDC 11 GP pinsmode 1 w/EM_A[21:0]
0 = GP[54,CCDCSEL = 0 -
43:36]
HVDSEL = 0 - 0 = GP[53:52]
CWENSEL = 0 0 = EM_R/ W -
B B1 0 001 100 CFLDSEL = 0 0 = EM_A21 -
0 =CI10SEL = 0 -- -EM_A[19:20]
0 =CI32SEL = 0 -EM_A[17:18]
0 =CI54SEL = 0 -EM_A[15:16]
0 =CI76SEL = 0 -EM_A[13:14]
8-bit EMIFA(Async) Pinout
8-to-16-bit 0-to-10 GPConfig Summary No PCI mode 1 w/
CCDC pinsEM_A[12:0]
only
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]B B2 0 001 000
CWENSEL = 0 0 = EM_R/ W - -
0 = EM_A21CFLDSEL = 0,1 1 = C_FIELD --
(not used)
CI10SEL = 0,1 -1 = CI[1:0] 0 = GP[45:44]
CI32SEL = 0,1 -1 = CI[3:2] 0 = GP[47:46]
CI54SEL = 0,1 -1 = CI[5:4] 0 = GP[49:48]
CI76SEL = 0,1 -1 = CI[7:6] 0 = GP[51:50]
8-bit EMIFA(Async) Pinout
8-to-14-bitConfig Summary No PCI mode 1 w/ 0-to-8 GP pinsCCDCEM_A[14:0]
only
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]
B B3 0 001 001
CWENSEL = 0 0 = EM_R/ W - -
0 = EM_A21CFLDSEL = 0,1 1 = C_FIELD -(not used)-
CI10SEL = 0,1 -1 = CI[1:0] 0 = GP[45:44]
CI32SEL = 0,1 -1 = CI[3:2] 0 = GP[47:46]
CI54SEL = 0,1 -1 = CI[5:4] 0 = GP[49:48]
0 =CI76SEL = 0 - -EM_A[13:14]
(1) Italics indicate mandatory settings for a given Minor Configuration option.
Submit Documentation Feedback Device Configurations 133
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-44. EMIFA/VPSS Sub-Block 0 Configuration Choice B (continued)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
PCIEN AEM AEAW OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
8-bit EMIFA(Async) Pinout
8-to-12-bitConfig Summary No PCI mode 1 w/ 0-to-6 GP pinsCCDCEM_A[16:0]
only
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]
CWENSEL = 0 0 = EM_R/ W - -B B4 0 001 010
0 = EM_A21CFLDSEL = 0,1 1 = C_FIELD -(not used)-CI10SEL = 0,1 -1 = CI[1:0] 0 = GP[45:44]
CI32SEL = 0,1 -1 = CI[3:2] 0 = GP[47:46]
0 =CI54SEL = 0 - -EM_A[15:16]
0 =CI76SEL = 0 - -EM_A[13:14]
8-bit EMIFA(Async) Pinout
8-to-10-bitConfig Summary No PCI mode 1 w/ 0-to-4 GP pinsCCDCEM_A[18:0]
only
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]
CWENSEL = 0 0 = EM_R/ W - -B B5 0 001 011
0 = EM_A21CFLDSEL = 0,1 1 = C_FIELD -(not used)
-CI10SEL = 0,1 -1 = CI[1:0] 0 = GP[45:44]
0 =CI32SEL = 0 - -EM_A[17:18]
0 =CI54SEL = 0 - -EM_A[15:16]
0 =CI76SEL = 0 - -EM_A[13:14]
134 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-44. EMIFA/VPSS Sub-Block 0 Configuration Choice B (continued)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
PCIEN AEM AEAW OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
8-bit EMIFA(Async) PinoutConfig Summary No PCI 8-bit CCDC 0-to-2 GP pinsmode 1 w/EM_A[21:0]
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]
CWENSEL = 0 0 = EM_R/ W - -
B B6 0 001 100 CFLDSEL = 0,1 0 = EM_A21 1 = C_FIELD -
0 =CI10SEL = 0 - --
EM_A[19:20]
0 =CI32SEL = 0 - -EM_A[17:18]
0 =CI54SEL = 0 - -EM_A[15:16]
0 =CI76SEL = 0 - -EM_A[13:14]
Submit Documentation Feedback Device Configurations 135
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-45. EMIFA/VPSS Sub-Block 0 Configuration Choice C
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
PCIEN AEM AEAW OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
8-bit EMIFAConfig Summary No PCI (Async) Pinout No CCDC 12 GP pinsmode 3
0 = GP[54,CCDCSEL = 0 -
43:36]
HVDSEL = 0 - 0 = GP[53:52]
C1 0 011 000
CWENSEL = 0 0 = EM_R/ W -
CFLDSEL = 0 - 0 = GP[34]- -
CI10SEL = 0 0 = EM_D[6:7] -
CI32SEL = 0 0 = EM_D[4:5] -
CI54SEL = 0 0 = EM_D[2:3] -
CI76SEL = 0 0 = EM_D[0:1] -C
8-bit EMIFAConfig Summary No PCI (Async) Pinout 8-bit CCDC 0-to-3 GP pinsmode 3
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]
C2 0 011 000
CWENSEL = 0 0 = EM_R/ W - -
CFLDSEL = 0 - 1 = C_FIELD 0 = GP[34]-
CI10SEL = 0 0 = EM_D[6:7] - -
CI31SEL = 0 0 = EM_D[4:5] - -
CI54SEL = 0 0 = EM_D[2:3] - -
CI76SEL = 0 0 = EM_D[0:1] - -
(1) Italics indicate mandatory settings for a given Minor Configuration option.
136 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-46. EMIFA/VPSS Sub-Block 0 Configuration Choice D
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
PCIEN AEM AEAW OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
8-bit EMIFACfg Summary No PCI (NAND) Pinout No CCDC 13 GP pinsmode 4
0 = GP[54,CCDCSEL = 0 -
43:36]
HVDSEL = 0 - 0 = GP[53:52]
D1 0 100 000
CWENSEL = 0 - 0 = GP[35]
CFLDSEL = 0 - 0 = GP[34]- -
CI10SEL = 0 0 = EM_D[6:7] -
CI32SEL = 0 0 = EM_D[4:5] -
CI54SEL = 0 0 = EM_D[2:3] -
CI76SEL = 0 0 = EM_D[0:1] -D
8-bit EMIFACfg Summary No PCI (NAND) Pinout 8-bit CCDC 0-to-4 GP pinsmode 4
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]
D2 0 100 000
CWENSEL = 0,1 - 1 = C_WE 0 = GP[35]
CFLDSEL = 0,1 - 1 = C_FIELD 0 = GP[34]-
CI10SEL = 0 0 = EM_D[6:7] - -
CI31SEL = 0 0 = EM_D[4:5] - -
CI54SEL = 0 0 = EM_D[2:3] - -
CI76SEL = 0 0 = EM_D[0:1] - -
(1) Italics indicate mandatory settings for a given Minor Configuration option.
Submit Documentation Feedback Device Configurations 137
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-47. EMIFA/VPSS Sub-Block 0 Configuration Choice E
(1)
PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSMAJOR MINORCONFIG CONFIG
AEAPCIEN AEM OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
W
8-bit EMIFACfg Summary No PCI (NAND) Pinout No CCDC 21 GP pinsmode 5
CCDCSEL = 0 0 = GP[54, 43:36]
HVDSEL = 0 0 = GP[53:52]
CWENSEL = 0 0 = GP[35]E1 0 101 000
CFLDSEL = 0 0 = GP[34]- - -CI10SEL = 0 0 = GP[45:44]
CI32SEL= 0 0 = GP[47:46]
CI54SEL = 0 0 = GP[49:48]
CI76SEL = 0 0 = GP[51:50]E
8-bit EMIFA
8-to-16-bitCfg Summary No PCI (NAND) Pinout 0-to-12 GP pinsCCDCmode 5
CCDCSEL = 1 1 = PCLK, YI[7:0] -
HVDSEL = 0,1 1= VD, HD 0 = GP[53:52]
CWENSEL = 0,1 1 = C_WE 0 = GP[35]E2 0 101 000
CFLDSEL = 0,1 1 = C_FIELD 0 = GP[34]- -CI10SEL = 0,1 1 = CI[1:0] 0 = GP[45:44]
CI31SEL = 0,1 1 = CI[3:2] 0 = GP[47:46]
CI54SEL = 0,1 1 = CI[5:4] 0 = GP[49:48]
CI76SEL = 0,1 1 = CI[7:6] 0 = GP[51:50]
(1) Italics indicate mandatory settings for a given Minor Configuration option.
138 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-48. EMIFA/VPSS Sub-Block 0 Configuration Choice F
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
PCIEN AEM AEAW OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
Cfg Summary PCI No EMIFA No CCDC 13 GP pins
0 = GP[54,CCDCSEL = 0 -
43:36]
HVDSEL = 0 - 0 = GP[53:52]
CWENSEL = 0 - 0 = GP[35]
CFLDSEL = 0 - 0 = GP[34]
0 = PREQ,F1 1 000 000
CI10SEL = 0 -- -PINTA
0 = AD31,CI32SEL = 0 -PRST
0 = AD29,CI54SEL =0 -PGNT
0 = AD25,CI76SEL = 0 -AD27F
Cfg Summary PCI No EMIFA 8-bit CCDC 0-to-4 GP pins
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]
CWENSEL = 0,1 - 1 = C_WE 0 = GP[35]
CFLDSEL = 0,1 - 1 = C_FIELD 0 = GP[34]
0 = PREQ,F2 1 000 000
CI10SEL = 0 - --PINTA
0 = AD31,CI31SEL = 0 - -PRST
0 = AD29,CI54SEL = 0 - -PGNT
0 = AD25,CI76SEL = 0 - -AD27
(1) Italics indicate mandatory settings for a given Minor Configuration option.
Submit Documentation Feedback Device Configurations 139
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-49. EMIFA/VPSS Sub-Block 0 Configuration Choice G
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
PCIEN AEM AEAW OTHERS PCI EMIFA VPFE # GPIO PINSOPTION OPTION
8-bit EMIFA
(NAND)Cfg Summary PCI No CCDC 13 GP pinsPinout mode
5
0 = GP[54,CCDCSEL = 0 -
43:36]
HVDSEL = 0 - 0 = GP[53:52]
CWENSEL = 0 - 0 = GP[35]
G1 1 101 000 CFLDSEL = 0 - 0 = GP[34]
0 = PREQ,CI10SEL = 0 -- -PINTA
0 = AD31,CI32SEL = 0 -PRST
0 = AD29,CI54SEL = 0 -PGNT
0 = AD25,CI76SEL = 0 -AD27G
8-bit EMIFA
(NAND)Cfg Summary PCI 8-bit CCDC 0-to-4 GP pinsPinout mode
5
1 = PCLK,CCDCSEL = 1 - -YI[7:0]
HVDSEL = 0,1 - 1 = VD, HD 0 = GP[53:52]
CWENSEL = 0,1 - 1 = C_WE 0 = GP[35]
G2 1 101 000 CFLDSEL = 0,1 - 1 = C_FIELD 0 = GP[34]
0 = PREQ,CI10SEL = 0 - --PINTA
0 = AD31,CI31SEL = 0 - -PRST
0 = AD29,CI54SEL = 0 - -PGNT
0 = AD25,CI76SEL = 0 - -AD27
(1) Italics indicate mandatory settings for a given Minor Configuration option.
As shown in Table 3-43 through Table 3-49 , the configuration choices of the EMIFA/VPSS Sub-Block 0are determined by the following PINMUX register fields:PINMUX1 register field PCIENPINMUX0 register fields AEM, AEAW, CCDCSEL, HVDSEL, CWENSEL, CFLDSEL, CI10SEL,CI32SEL, CI54SEL, and CI76SEL.
140 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The following is an example of how to read Table 3-43 through Table 3-49 using Sub-Block 0 MinorConfiguration B6 as an example:The PINMUX Selection Fields columns indicate that Sub-Block 0 Minor Configuration Option B6 isselected through setting PINMUX1.PCIEN = 0, PINMUX0.AEM = 1, PINMUX0.AEAW = 4, CCDCSEL= 1, HVDSEL = 0 or 1 (based on the system’s need for VPFE control signals VD and HD), CWENSEL= 0 (mandatory setting), CFLDSEL = 0 or 1 (based on the system’s need for VPFE control signalC_FIELD), CI10SEL = 0 (mandatory), CI32SEL = 0 (mandatory), CI54SEL = 0 (mandatory), andCI76SEL = 0 (mandatory).The Resulting Peripherals/Pins columns show the functional pins resulting from the PINMUX setting.For example, PINMUX0.CCDCSEL = 1 gives the user the PCLK and YI[7:0] pins for the VPFE.PINMUX0.HVDSEL = 1 gives the user VD and HD pins for VPFE, while HVDSEL = 0 gives the user 2GP pins.
Submit Documentation Feedback Device Configurations 141
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
3.7.3.13.4 EMIFA/VPSS Sub-Block 1 Configuration Choices
Table 3-50 through Table 3-54 show the configuration choices in the EMIFA/VPSS Sub-Block 1. Forinstructions on how to use the different configuration choices tables for the EMIFA/VPSS Block andSub-Blocks, see Section 3.7.3.13.1 ,EMIFA/VPSS Block Pin Selection Procedure.
Before using Table 3-50 through Table 3-54 to configure the details of the EMIFA/VPSS Sub-Block 1, theuser should first select the Major Configuration Option for the EMIFA/VPSS Block (see Section 3.7.3.13.2 ,EMIFA/VPSS Block Major Configuration Choices). After determining the Major Configuration Option (A, B,C, D, E, F, or G), the user can now use Table 3-50 through Table 3-54 to refine the Sub-Block 1 pinselections.
1. Go to the table with the Major Configuration Option chosen from Table 3-42 .
2. Each Major Configuration Option is further divided down into multiple Minor Configuration Options.Select a Minor Configuration Option that best suits the application need.
3. Within the chosen Minor Configuration Option, further refine the detailed pin configurations by selectingthe settings of PINMUX0 fields VENCSEL, RGBSEL, CS3SEL, CS4SEL, CS5SEL, and VPBECKEN.
4. The PINMUX Selection Fields columns give the user the settings needed to program the PINMUX0register.
Device Configurations142 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-50. EMIFA/VPSS Sub-Block 1 Configuration Choices A and F
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
AEM OTHERS EMIFA VPBE GPIOOPTION OPTION
Cfg Summary No EMIFA No VENC 29 GP pins
VENCSEL = 0 0 = GP[31, 29:14]
RGBSEL = 0 0 = GP[12:5]
A1, F1 000 CS3SEL = 0 0 = GP[13]- -CS4SEL = 0 0 = GP[32]
CS5SEL = 0 0 = GP[33]
VPBECKEN = 0 0 = GP[30]
Cfg Summary No EMIFA 8-bit VENC 8 to 29 GP pins
1 = VCLK,VENCSEL = 1 1 = GP[21:14]YOUT[7:0]
0 = GP[12:5]0 = noneRGBSEL = 0,1 1 = GP[12],1 = LCD_FIELDA2, F2 000
GP[10:5]-CS3SEL = 0,2 2 = LCD_OE 0 = GP[13]
CS4SEL = 0,2 2 = VSYNC 0 = GP[32]A, F
CS5SEL = 0,2 2 = HSYNC 0 = GP[33]
VPBECKEN = 0,1 1 = VPBECLK 0 = GP[30]
Cfg Summary No EMIFA 16-to-24-bit VENC 0 to 12 GP pins
2 = VCLK,VENCSEL = 2 YOUT[7:0], -COUT[7:0]
0 = none 0 = GP[12:5]1 = LCD_FIELD 1 = GP[12],2 = R2, B2 GP[10:5]RGBSEL = 0,1,2,3,4 3 = R2, B2, 2 = GP[12:7]A3, F3 000
LCD_FIELD 3 = GP[12],-
4 = G0, B0, R0, G1, GP[10:7]B1, R1, R2, B2 4 = No GP
CS3SEL = 0,2 2 = LCD_OE 0 = GP[13]
CS4SEL = 0,2 2 = VSYNC 0 = GP[32]
CS5SEL = 0,2 2 = HSYNC 0 = GP[33]
VPBECKEN = 0,1 1 = VPBECLK 0 = GP[30]
(1) Italics indicate mandatory settings for a given Minor Configuration option.
Submit Documentation Feedback Device Configurations 143
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-51. EMIFA/VPSS Sub-Block 1 Configuration Choice B
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
AEM OTHERS EMIFA VPBE GPIOOPTION OPTION
8-bit EMIFA (Async)Cfg Summary No VENC 9-to-13 GP pinsPinout Mode 1
VENCSEL = 0 0 = EM_D[7:0] - 0 = GP[31, 29:22]
0 = EM_CS2,RGBSEL = 0 EM_A[4:0], - -EM_BA[1:0]B1 001
CS3SEL = 0,1 1 = EM_CS3 - 0 = GP[13]
CS4SEL = 0,1 1 = EM_CS4 - 0 = GP[32]
CS5SEL = 0,1 1 = EM_CS5 - 0 = GP[33]
1 = VPBECLK, canVPBECKEN = 0,1 - 0 = GP[30]be used by DACB
8-bit EMIFA (Async)Cfg Summary 8-bit VENC 0-to-4 GP pinsPinout Mode 1
1 = VCLK,VENCSEL = 1 1 = EM_D[7:0] -YOUT[7:0]
0 = EM_CS2,RGBSEL = 0 EM_A[4:0], - -B2 001
EM_BA[1:0]
CS3SEL = 0,1,2 1 = EM_CS3 2 = LCD_OE 0 = GP[13]
CS4SEL = 0,1,2 1 = EM_CS4 2 = VSYNC 0 = GP[32]
CS5SEL = 0,1,2 1 = EM_CS5 2 = HSYNC 0 = GP[33]
VPBECKEN = 0,1 - 1 = VPBECLK 0 = GP[30]
(1) Italics indicate mandatory setting for a given Minor Configuration option.
144 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-52. EMIFA/VPSS Sub-Block 1 Configuration Choice C
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
AEM OTHERS EMIFA VPBE GPIOOPTION OPTION
8-bit EMIFA (Async)Cfg Summary No VENC 17-to-21 GP pinsPinout Mode 3
VENCSEL = 0 - - 0 = GP[31, 29:14]
0 = EM_CS2,RGBSEL = 0 EM_A[4:0], - -EM_BA[1:0]C1 011
CS3SEL = 0,1 1 = EM_CS3 - 0 = GP[13]
CS4SEL = 0,1 1 = EM_CS4 - 0 = GP[32]
CS5SEL = 0,1 1 = EM_CS5 - 0 = GP[33]
1 = VPBECLK, canVPBECKEN = 0,1 - 0 = GP[30]be used by DAC
C
8-bit EMIFA (Async)Cfg Summary 16-bit VENC 0-to-4 GP pinsPinout Mode 3
2 = VCLK,VENCSEL = 2 - YOUT[7:0], -COUT[7:0]
0 = EM_CS2,C2 011
RGBSEL = 0 EM_A[4:0], - -EM_BA[1:0]
CS3SEL = 0,1,2 1 = EM_CS3 2 = LCD_OE 0 = GP[13]
CS4SEL = 0,1,2 1 = EM_CS4 2 = VSYNC 0 = GP[32]
CS5SEL = 0,1,2 1 = EM_CS5 2 = HSYNC 0 = GP[33]
VPBECKEN = 0,1 - 1 = VPBECLK 0 = GP[30]
(1) Italics indicate mandatory setting for a given Minor Configuration option.
Submit Documentation Feedback Device Configurations 145
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-53. EMIFA/VPSS Sub-Block 1 Configuration Choice D
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
AEM OTHERS EMIFA VPBE GPIOOPTION OPTION
8-bit EMIFA (NAND)Cfg Summary No VENC 22-to-26 GP pinsPinout Mode 4
VENCSEL = 0 - - 0 = GP[31, 29:14]
0 = EM_A[2:1],RGBSEL = 0 - 0 = GP[11:10, 7:5]EM_CS2
D1 100 CS3SEL = 0,1 1 = EM_CS3 - 0 = GP[13]
CS4SEL = 0,1 1 = EM_CS4 - 0 = GP[32]
CS5SEL = 0,1 1 = EM_CS5 - 0 = GP[33]
1 = VPBECLK,VPBECKEN = 0,1 - can be used by 0 = GP[30]DAC
8-bit EMIFA (NAND)Cfg Summary 8-bit VENC 12-to-17 GP pinsPinout Mode 4
1 = VCLK,VENCSEL = 1 - 1 = GP[21:14]YOUT[7:0]
0 = EM_A[2:1],
EM_CS2 0 = none 0 = GP[11:10, 7:5]RGBSEL = 0,1D2 100
1 = EM_A[2:1], 1 = LCD_FIELD 1 = GP[10, 7:5]EM_CS2
CS3SEL = 0,1,2 1 = EM_CS3 2 = LCD_OE 0 = GP[13]D
CS4SEL = 0,1,2 1 = EM_CS4 2 = VSYNC 0 = GP[32]
CS5SEL = 0,1,2 1 = EM_CS5 2 = HSYNC 0 = GP[33]
VPBECKEN = 0,1 - 1 = VPBECLK 0 = GP[30]
8-bit EMIFA (NAND) 16-to-18-bitCfg Summary 2-to-9 GP pinsPinout Mode 4 VENC
2 = VCLK,VENCSEL = 2 - YOUT[7:0], -COUT[7:0]
0 = EM_A[2:1],
EM_CS2
0 = none1 = EM_A[2:1], 0 = GP[11:10, 7:5]1 = LCD_FIELDEM_CS2 1 = GP[10, 7:5]D3 100
RGBSEL = 0,1,2,3 2 = R2, B22 = EM_A[2:1], 2 = GP[11:10, 7]3 = R2, B2,EM_CS2 3 = GP[10, 7]LCD_FIELD3 = EM_A[2:1],
EM_CS2
CS3SEL = 0,1,2 1 = EM_CS3 2 = LCD_OE 0 = GP[13]
CS4SEL = 0,1,2 1 = EM_CS4 2 = VSYNC 0 = GP[32]
CS5SEL = 0,1,2 1 = EM_CS5 2 = HSYNC 0 = GP[33]
VPBECKEN = 0,1 - 1 = VPBECLK 0 = GP[30]
(1) Italics indicate mandatory setting for a given Minor Configuration option.
146 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-54. EMIFA/VPSS Sub-Block 1 Configuration Choices E and G
(1)
MAJOR MINOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG CONFIG
AEM OTHERS EMIFA VPBE GPIOOPTION OPTION
8-bit EMIFA (NAND)Cfg Summary No VENC 14-to-18 GP pinsPinout Mode 5
VENCSEL = 0 0 = EM_D[7:0] - 0 = GP[31, 29:22]
0 = EM_A[2:1],RGBSEL = 0 - 0 = GP[11:10, 7:5]EM_CS2E1,G1 101
CS3SEL = 0,1 1 = EM_CS3 - 0 = GP[13]
CS4SEL = 0,1 1 = EM_CS4 - 0 = GP[32]
CS5SEL = 0,1 1 = EM_CS5 - 0 = GP[33]
1 = VPBECLK, canVPBECKEN = 0,1 - 0 = GP[30]be used by DAC
8-bit EMIFA (NAND)E,G
Cfg Summary 8-bit VENC 4-to-9 GP pinsPinout Mode 5
1 = VCLK,VENCSEL = 1 1 = EM_D[7:0] -YOUT[7:0]
0 = EM_A[2:1],
EM_CS2 0 = none 0 = GP[11:10, 7:5]RGBSEL = 0,1E2,G2 101
1 = EM_A[2:1], 1 = LCD_FIELD 1 = GP[10, 7:5]EM_CS2
CS3SEL = 0,1,2 1 = EM_CS3 2 = LCD_OE 0 = GP[13]
CS4SEL = 0,1,2 1 = EM_CS4 2 = VSYNC 0 = GP[32]
CS5SEL = 0,1,2 1 = EM_CS5 2 = HSYNC 0 = GP[33]
VPBECKEN = 0,1 - 1 = VPBECLK 0 = GP[30]
(1) Italics indicate mandatory setting for a given Minor Configuration option.
The Sub-Block 1 Minor Configuration Options are independent from the Sub-Block 0 Minor ConfigurationOptions. The user can independently select the appropriate Minor Configuration Option for eachSub-Block.
As shown in Table 3-50 through Table 3-54 , the configuration choices of the EMIFA/VPSS Sub-Block 1are determined by the following PINMUX register fields:PINMUX0 register fields AEM, VENCSEL, RGBSEL, CS3SEL, CS4SEL, CS5SEL, and VPBECKEN.
The following is an example on how to read Table 3-50 through Table 3-54 using Sub-Block 1 MinorConfiguration G2 as an example:The PINMUX Selection Fields columns indicate that Sub-Block 1 Minor Configuration Option G2 isselected through setting PINMUX0 fields to AEM = 5, VENCSEL = 1, RGBSEL = 0 or 1 (based onwhether the VPBE LCD_FIELD pin is needed), CS3SEL = 0/1/2 (based on the desired pin choice),CS4SEL = 0/1/2 (based on the desired pin choice), CS5SEL = 0/1/2 (based on the desired pin choice),and VPBECKEN = 0/1 (based on whether VPBE VPBECLK is needed).The Resulting Peripherals/Pins columns show the functional pins resulting from the PINMUX setting.For example, PINMUX0.VENCSEL = 1 gives you the VCLK and YOUT[7:0] pins for the VPBE, inaddition to EM_D[7:0] pins for the EMIFA. PINMUX0.RGBSEL = 1 gives you the LCD_FIELD pin forthe VPBE, along with EM_A[2:1] and EM_CS2 for the EMIFA, and 4 GP pins.
Submit Documentation Feedback Device Configurations 147
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
3.7.3.13.5 EMIFA/VPSS Sub-Block 2 Configuration Choices
The 3 pins in the EMIFA/VPSS Sub-Block 2 are standalone (non-multiplexed) pins. They always functionas EMIFA control pins EM_WAIT/(RDY/ BSY), EM_OE, and EM_WE. No pin mux selection is necessaryfor this Sub-Block.
3.7.3.13.6 EMIFA/VPSS Sub-Block 3 Configuration Choices
The 8 pins in the EMIFA/VPSS Sub-Block 3 are multiplexed between:EMIFA Address Pins EM_A[12:5]PCI pins: PCBE3, PIDSEL, AD[24:19]GPIO pins GP[96:89]
The pin functions in the EMIFA/VPSS Sub-Block 3 are determined by the following PINMUX registerfields:
PINMUX1.PCIEN
PINMUX0.AEM
Once the Major Configuration Option for the EMIFA/VPSS Block (see Section 3.7.3.13.2 ,EMIFA/VPSSBlock Major Configuration Choices) is chosen, no further actions are necessary to refine the EMIFA/VPSSSub-Block 3 pin selection. For instructions on configuring the EMIFA/VPSS Block, see Section 3.7.3.13.1 ,EMIFA/VPSS Block Pin Selection Procedure.
Table 3-55 summarizes the pin selections in the EMIFA/VPSS Sub-Block 3 based on the PINMUXselections.
Table 3-55. EMIFA/VPSS Sub-Block 3 Configuration Choices
MAJOR PINMUX SELECTION FIELDS RESULTING PERIPHERALS/PINSCONFIG
PCIEN AEM PCI EMIFA GPIOOPTION
A 0 000 - - GP[96:89]
B 0 001 - EM_A[12:5] -
C 0 011 - EM_A[12:5] -
D 0 100 - - GP[96:89]
E 0 101 - - GP[96:89]
F 1 000 PCBE3, PIDSEL, AD[24:19] - -
G 1 101 PCBE3, PIDSEL, AD[24:19] - -
The following is an example on how to read Table 3-55 using Sub-Block 3 Major Configuration C as anexample:
The PINMUX Selection Fields columns indicate that Sub-Block 3 Major Configuration Option C isselected through PINMUX1.PCIEN = 0 and PINMUX0.AEM = 3.The Resulting Peripherals/Pins columns show the functional pins resulting from the PINMUX setting. InMajor Configuration C, the user gets EMIFA address pins EM_A[12:5] from Sub-Block 3.
Device Configurations148 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
3.7.3.13.7 EMIFA/VPSS Block Pin-By-Pin Multiplexing Summary
This section summarizes the EMIFA/VPSS Block muxing on a pin-by-pin basis. It provides an alternativeview to pin muxing in the EMIFA/VPSS Block. This section should only be used after following theprocedures listed in Section 3.7.3.13.1 to determine the actual EMIFA/VPSS Configuration Option for theapplication need.
Table 3-56 shows the pin multiplexing control for each pin in the EMIFA/VPSS Sub-Block 0. These are thefields in the PINMUX0 and PINMUX1 registers that control the multiplexing in this sub-block:PINMUX0: AEM, AEAW, CWENSEL, CFLDSEL, CI10SEL, CI32SEL, CI54SEL, CI76SEL, CCDCSEL,HVDSEL
PINMUX1: PCIEN
Table 3-57 shows the pin multiplexing control for each pin in the EMIFA/VPSS Sub-Block 1. These are thefields in the PINMUX0 register that control the multiplexing in this sub-block:PINMUX0: AEM, VENCSEL, RGBSEL, CS5SEL, CS4SEL, CS3SEL, VPBECKEN
EMIFA/VPSS Sub-Block 2 is dedicated to EMIFA pins EM_WAIT/(RDY/ BSY), EM_OE, and EM_WE.There is no pin multiplexing in this block. These pins always function as EMIFA control pins.
Table 3-58 shows the pin multiplexing control for each pin in the EMIFA/VPSS Sub-Block 3. These are thefields in the PINMUX0 and PINMUX1 registers that control the multiplexing in this sub-block:PINMUX0: AEMPINMUX1: PCIEN
Submit Documentation Feedback Device Configurations 149
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 3-56. EMIFA/VPSS Sub-Block 0 Pin-By-Pin Mux Control
MULTIPLEXED FUNCTIONS
EMIFA ADDR/CTRL EMIFA DATASIGNAL NAME VPFE PCI GPIO(AEM[2:0] = 1, 3) (AEM[2:0] = 3, 4)
FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
PCLK/GP[54] PCLK CCDCSEL = 1 – – – – – – GP[54] CCDCSEL = 0
YI7(CCD7)/GP[43] YI7(CCD7) – – – – – – GP[43]
YI6(CCD6)/GP[42] YI6(CCD6) – – – – – – GP[42]
YI5(CCD5)/GP[41] YI5(CCD5) – – – – – – GP[41]
YI4(CCD4)/GP[40] YI4(CCD4) – – – – – – GP[40]
YI3(CCD3)/GP[39] YI3(CCD3) – – – – – – GP[39]
YI2(CCD2)/GP[38] YI2(CCD2) – – – – – – GP[38]
YI1(CCD1)/GP[37] YI1(CCD1) – – – – – – GP[37]
YI0(CCD0)/GP[36] YI0(CCD0) – – – – – – GP[36]
VD/GP[53] VD HVDSEL = 1 – – – – – – GP[53] HVDSEL = 0
HD/GP[52] HD – – – – – – GP[52]
CI7(CCD15)/EM_A[13]/ PCIEN = 0, PCIEN = 0, PCIEN = 0, PCIEN = 1, PCIEN = 0,CI7(CCD15) EM_A[13] EM_D[0] AD25 GP[51]AD25/EM_D[0]/GP[51] AEM = 0/1/5, AEM = 1, AEM = 3/4, AEM = 0/5, AEM = 0/1/5,AEAW = 0, AEAW = 1/2/3/4, AEAW = 0, AEAW = 0, AEAW = 0,CI6(CCD14)/EM_A[14]/
CI76SEL = 1 CI76SEL = 0 CI76SEL = 0 CI76SEL = 0 CI76SEL = 0CI6(CCD14) EM_A[14] EM_D[1] AD27 GP[50]AD27/EM_D[1]/GP[50]
CI5(CCD13)/EM_A[15]/ PCIEN = 0, PCIEN = 0, PCIEN = 0, PCIEN = 1, PCIEN = 0,CI5(CCD13) EM_A[15] EM_D[2] AD29 GP[49]AD29/EM_D[2]/GP[49] AEM = 0/1/5, AEM = 1, AEM = 3/4, AEM = 0/5, AEM = 0/1/5,AEAW = 0/1
(1)
, AEAW = 2/3/4, AEAW = 0, AEAW = 0, AEAW = 0/1
(1)
,CI4(CCD12)/EM_A[16]/
CI54SEL = 1 CI54SEL = 0 CI54SEL = 0 CI54SEL = 0 CI54SEL = 0CI4(CCD12) EM_A[16] EM_D[3] PGNT GP[48]PGNT/EM_D[3]/GP[48]
CI3(CCD11)/EM_A[17]/ PCIEN = 0, PCIEN = 0, PCIEN = 0, PCIEN = 1, PCIEN = 0,CI3(CCD11) EM_A[17] EM_D[4] AD31 GP[47]AD31/EM_D[4]/GP[47] AEM = 0/1/5, AEM = 1, AEM = 3/4, AEM = 0/5, AEM = 0/1/5,AEAW = 0/1/2
(1)
, AEAW = 3/4, AEAW = 0, AEAW = 0, AEAW = 0/1/2
(1)
,CI2(CCD10)/EM_A[18]/
CI32SEL = 1 CI32SEL = 0 CI32SEL = 0 CI32SEL = 0 CI32SEL = 0CI2(CCD10) EM_A[18] EM_D[5] PRST GP[46]PRST/EM_D[5]/GP[46]
CI1(CCD9)/EM_A[19]/ PCIEN = 0, PCIEN = 0, PCIEN = 0, PCIEN = 1, PCIEN = 0,CI1(CCD9) EM_A[19] EM_D[6] PREQ GP[45]PREQ/EM_D[6]/GP[45] AEM = 0/1/5, AEM = 1, AEM = 3/4, AEM = 0/5, AEM = 0/1/5,AEAW = 0/1/2/3
(1)
, AEAW = 4, AEAW = 0, AEAW = 0, AEAW = 0/1/2/3
(1)
,CI0(CCD8)/EM_A[20]/
CI10SEL = 1 CI10SEL = 0 CI10SEL = 0 CI10SEL = 0 CI10SEL = 0CI0(CCD8) EM_A[20] EM_D[7] PINTA GP[44]PINTA/EM_D[7]/GP[44]
C_WE/EM_R/ W/GP[35] CWENSEL = 1, CWENSEL = 0, CWENSEL = 0,C_WE EM_R/ W GP[35]AEM = 0/4/5 AEM = 1/3 AEM = 0/4/5
C_FIELD/EM_A[21]/GP[34] CFLDSEL = 1, CFLDSEL = 0, CFLDSEL = 0,C_FIELD EM_A[21] – GP[34]AEM = 0/1/3/4/5 AEM = 1 AEM = 0/3/4/5
(1) AEAW = 1/2/3/4 is only valid if AEM[2:0] = 1.
150 Device Configurations Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 3-57. EMIFA/VPSS Sub-Block 1 Pin-By-Pin Mux Control
MULTIPLEXED FUNCTIONS
SIGNAL VPBEVPBE EMIFA GPIONAME EXTRA FUNCTIONS
FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
HSYNC/ EM_CS5/GP[33] HSYNC CS5SEL = 2 EM_CS5 CS5SEL = 1 GP[33] CS5SEL = 0
VSYNC/ EM_CS4/GP[32] VSYNC CS4SEL = 2 EM_CS4 CS4SEL = 1 GP[32] CS4SEL = 0
VPBECLK/GP[30] VPBECLK VPBECKEN = 1 GP[30] VPBECKEN = 0
VCLK/GP[31] VCLK VENCSEL = 1/2 GP[31] VENCSEL = 0
YOUT7/GP[29] YOUT7 – – – – GP[29]
YOUT6/GP[28] YOUT6 – – – – GP[28]
YOUT5/GP[27] YOUT5 – – – – GP[27]
YOUT4/GP[26]/(FASTBOOT) YOUT4 – – – – GP[26]
YOUT3/GP[25]/(BOOTMODE3) YOUT3 – – – – GP[25]
YOUT2/GP[24]/(BOOTMODE2) YOUT2 – – – – GP[24]
YOUT1/GP[23]/(BOOTMODE1) YOUT1 – – – – GP[23]
YOUT0/GP[22]/(BOOTMODE0) YOUT0 – – – – GP[22]
COUT7/EM_D[7]/GP[21] COUT7 VENCSEL = 2, EM_D[7] VENCSEL = GP[21] VENCSEL =AEM = 0/3/4 0/1, 0/1,COUT6/EM_D[6]/GP[20] COUT6 – EM_D[6] GP[20]AEM = 1/5 AEM = 0/3/4
COUT5/EM_D[5]/GP[19] COUT5 – EM_D[5] GP[19]
COUT4/EM_D[4]/GP[18] COUT4 – EM_D[4] GP[18]
COUT3/EM_D[3]/GP[17] COUT3 – EM_D[3] GP[17]
COUT2/EM_D[2]/GP[16] COUT2 – EM_D[2] GP[16]
COUT1/EM_D[1]/GP[15] COUT1 – EM_D[1] GP[15]
COUT0/EM_D[0]/GP[14] COUT0 – EM_D[0] GP[14]
LCD_OE/ EM_CS3/GP[13] LCD_OE CS3SEL = 2 EM_CS3 CS3SEL = 1 GP[13] CS3SEL = 0
G0/ EM_CS2/GP[12] G0 EM_CS2 GP[12]
G1/EM_A[1]/(ALE)/ RGBSEL = RGBSEL =G1 – EM_A[1]/(ALE) GP[9]GP[9]/(AEAW1/PLLMS1) 0/1
(1)
, 0/1/2/3,AEM = 1/3/4/5 AEM = 0B1/EM_A[2]/(CLE)/GP[8]/
B1 – EM_A[2]/(CLE) GP[8](AEAW0/PLLMS0)
RGBSEL = 4,
LCD_FIELD RGBSEL = EM_A[3] GP[11] RGBSEL =AEM = 0B0/LCD_FIELD/EM_A[3]/GP[11
B0 1/3
(1)
, 0/2
(1)
,]
AEM = 0/4/5 AEM = 0/4/5
R0/EM_A[4]/GP[10]/
RGBSEL =R0 – EM_A[4] GP[10]RGBSEL = 0,(AEAW2/PLLMS2)
0/1/2/3
(1)
,AEM = 1/3
AEM = 0/4/5R1/EM_A[0]/GP[7]/(AEM2) R1 – EM_A[0] GP[7]
R2/EM_BA[0]/GP[6]/(AEM1) R2 RGBSEL = – EM_BA[0] GP[6]
RGBSEL = 0/1,2/3/4,
AEM = 0/4/5B2/EM_BA[1]/GP[5]/(AEM0) B2 – EM_BA[1] GP[5]AEM = 0
(1) Valid RGBSEL settings depend on AEM mode:RGBSEL = 0 is valid for AEM[2:0] = 0/1/3/4/5RGBSEL = 1 is only valid if AEM[2:0] = 0/4/5RGBSEL = 2/3/4 is only valid if AEM[2:0] = 0
Table 3-58. EMIFA/VPSS Sub-Block 3 Pin-By-Pin Mux Control
MULTIPLEXED FUNCTIONSSIGNAL
NAME
EMIFA PCI GPIO
FUNCTION SELECT FUNCTION SELECT FUNCTION SELECT
EM_A[12]/ PCBE3/GP[89] EM_A[12] PCBE3 GP[89]
EM_A[11]/AD24/GP[90] EM_A[11] AD24 GP[90]
EM_A[10]/AD23/GP[91] EM_A[10] AD23 GP[91]
EM_A[9]/PIDSEL/GP[92] EM_A[9] PIDSEL GP[92]PCIEN = 0, PCIEN = 1, PCIEN = 0,AEM = 1/3 AEM = 0/5 AEM = 0/4/5EM_A[8]/AD21/GP[93] EM_A[8] AD21 GP[93]
EM_A[7]/AD22/GP[94] EM_A[7] AD22 GP[94]
EM_A[6]/AD20/GP[95] EM_A[6] AD20 GP[95]
EM_A[5]/AD19/GP[96] EM_A[5] AD19 GP[96]
Submit Documentation Feedback Device Configurations 151
l TEXAS INSTRUMENTS SPRAAGO SPRU978 SPRU978 SPRU871 SPRAAGO
3.8 Device Initialization Sequence After Reset
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Software should follow this initialization sequence after coming out of device reset.
1. Complete the boot sequence as needed. For more details on the boot sequence, see the Using theTMS320DM643x Bootloader Application Report (literature number SPRAAG0 ).
2. If the device is not already at the desired operating frequency, program the PLL Controllers (PLLC1and PLLC2) to configure the device frequency. For details on how to program the PLLC, see theTMS320DM643x DMP DSP Subsystem Reference Guide (literature number SPRU978 ).
3. Program PINMUX0 and PINMUX1 registers to select device pin functions. For more details onprogramming the PINMUX0 and PINMUX1 registers to select device pin functions, see Section 3.7 ,Multiplexed Pin Configurations.Note: If EMAC operation is desired, the EMAC must be placed in reset before programmingPINMUX1.HOSTBK to select EMAC pins.
4. Program the VDD3P3V_PWDN register to power up the necessary I/O pins. For more details onprogramming the VDD3P3V_PWDN register, see Section 3.2 ,Power Considerations.
5. As needed by the application, program the following System Module registers when there are no activetransactions on the respective peripherals:
a. HPICTL (Section 3.6.2.1 ,HPI Control Register): applicable for HPI only if a different host burstwrite timeout value from default is desired.b. TIMERCTL (Section 3.6.2.2 ,Timer Control Register): applicable for Timer0 and Watchdog Timer2only.
c. EDMATCCFG (Section 3.6.2.3 ,EDMA TC Configuration Register): applicable for EDMA only. Therecommendation is to leave the EDMATCCFG register at its default.d. VPSS_CLKCTL (Section 3.3.2 ,VPSS Clocks): applicable for VPSS only.
6. Program the Power and Sleep Controller (PSC) to enable the desired peripherals. For details on howto program the PSC, see the TMS320DM643x DMP DSP Subsystem Reference Guide (literaturenumber SPRU978 ).
7. Program the Switched Central Resource (SCR) bus priorities for the master peripherals(Section 3.6.1 ). This must be configured when there are no active transactions on the respectiveperipherals:
a. Program the MSTPRI0 and MSTPRI1 registers in the System Module. These registers can beprogrammed before or after the respective peripheral is enabled by the PSC in step 6.b. Program the EDMACC QUEPRI register, the C64x+ MDMAARBE.PRI field, and the VPSS PCRregister. These registers can only be programmed after the respective peripheral is enabled by thePSC in step 6.
8. Configure the C64x+ Megamodule and the peripherals.
a. For details on C64x+ Megamodule configuration, see the TMS320C64x+ DSP MegamoduleReference Guide (literature number SPRU871 ).
Special considerations: Bootloader disables C64x+ cache—For all boot modes that default toDSPBOOTADDR = 0x0010 0000 (i.e., all boot modes except the EMIFA ROM Direct Boot,BOOTMODE[3:0] = 0100, FASTBOOT = 0), the bootloader code disables all C64x+ cache (L2,L1P, and L1D) so that upon exit from the bootloader code, all C64x+ memories are configured asall RAM (L2CFG.L2MODE = 0h, L1PCFG.L1PMODE = 0h, and L1DCFG.L1DMODE = 0h). If cacheuse is required, the application code must explicitly enable the cache. For more information on bootmodes, see Section 3.4.1 ,Boot Modes. For more information on the bootloader, see the Using theTMS320DM643x Bootloader Application Report (literature number SPRAAG0 ).
Device Configurations152 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRUQBB
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
b. Peripherals configuration: see the respective peripheral user’s guide.
Special considerations: DDR2 memory controller—the Peripheral Bus Burst Priority Register(PBBPR) should be programmed to ensure good DDR2 throughput and to prevent commandstarvation (prevention of certain commands from being processed by the DDR2 memory controller).For more details, see the TMS320DM643x DMP DDR2 Memory Controller User’s Guide (literaturenumber SPRU986 ). A hex value of 0x20 is recommended for the PBBPR PR_OLD_COUNT field toprovide a good DSP performance and still allow good utilization by other modules.
Submit Documentation Feedback Device Configurations 153
l TEXAS INSTRUMENTS
3.9 Debugging Considerations
3.9.1 Pullup/Pulldown Resistors
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Proper board design should ensure that input pins to the DM643x DMP device always be at a valid logiclevel and not floating. This may be achieved via pullup/pulldown resistors. The DM643x DMP featuresinternal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unlessotherwise noted, for external pullup/pulldown resistors.
An external pullup/pulldown resistor needs to be used in the following situations:Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an externalpullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desiredvalue/state.
Other Input Pins: If the IPU/IPD does not match the desired value/state, use an externalpullup/pulldown resistor to pull the signal to the opposite rail.EMIFA Chip Select Outputs: On DM6437, the EMIFA chip select pins ( EM_CS2, EM_CS3, EM_CS4,and EM_CS5) feature an internal pulldown (IPD) resistor. If these pins are connected and used as anEMIFA chip select signal, for proper device operation, an external pullup resistor must be used toensure the EM_CSx function defaults to an inactive (high) state.
For the boot and configuration pins (listed in Table 2-5 ,Boot Terminal Functions), if they are both routedout and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor beimplemented. Although, internal pullup/pulldown resistors exist on these pins and they may match thedesired configuration value, providing external connectivity can help ensure that valid logic levels arelatched on these device boot and configuration pins. In addition, applying external pullup/pulldownresistors on the boot and configuration pins adds convenience to the user in debugging and flexibility inswitching operating modes.
Tips for choosing an external pullup/pulldown resistor:Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sureto include the leakage currents of all the devices connected to the net, as well as any internal pullup orpulldown resistors.Decide a target value for the net. For a pulldown resistor, this should be below the lowest V
IL
level ofall inputs connected to the net. For a pullup resistor, this should be above the highest V
IH
level of allinputs on the net. A reasonable choice would be to target the V
OL
or V
OH
levels for the logic family ofthe limiting device; which, by definition, have margin to the V
IL
and V
IH
levels.Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the netwill reach the target pulled value when maximum current from all devices on the net is flowing throughthe resistor. The current to be considered includes leakage current plus, any other internal andexternal pullup/pulldown resistors on the net.For bidirectional nets, there is an additional consideration which sets a lower limit on the resistancevalue of the external resistor. Verify that the resistance is small enough that the weakest output buffercan drive the net to the opposite logic level (including margin).Remember to include tolerances when selecting the resistor value.For pullup resistors, also remember to include tolerances on the DV
DD
rail.
For most systems, a 1-k resistor can be used to oppose the IPU/IPD while meeting the above criteria.Users should confirm this resistor value is correct for their specific application.
For most systems, a 20-k resistor can be used to compliment the IPU/IPD on the boot and configurationpins while meeting the above criteria. Users should confirm this resistor value is correct for their specificapplication.
For more detailed information on input current (I
I
), and the low-/high-level input voltages (V
IL
and V
IH
) forthe DM643x DMP, see Section 5.3 ,Electrical Characteristics Over Recommended Ranges of SupplyVoltage and Operating Temperature.
Device Configurations154 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminalfunctions table.
Submit Documentation Feedback Device Configurations 155
l TEXAS INSTRUMENTS
4 System Interconnect
4.1 System Interconnect Block Diagram
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
On the DM6437 device, the C64x+ Megamodule, the EDMA3 transfer controllers, and the systemperipherals are interconnected through a switch fabric architecture (see Figure 4-1 ). The switch fabric iscomposed of multiple switched central resources (SCRs) and multiple bridges. The SCRs establishlow-latency connectivity between master peripherals and slave peripherals. Additionally, the SCRs providepriority-based arbitration and facilitate concurrent data movement between master and slave peripherals.Through an SCR, the DSP subsystem can send data to the DDR2 Memory Controller without affecting adata transfer between the EMAC and L2 memory. Bridges are mainly used to perform bus-widthconversion as well as bus operating frequency conversion. For example, in Figure 4-1 , Bridge 6 performsa frequency conversion between a bus operating at DSP/3 clock rate and a bus operating at DSP/6 clockrate. Furthermore, Bridge 5 performs a bus-width conversion between a 64-bit bus and a 32-bit bus.
The C64x+ Megamodule, the EDMA3 transfer controllers (EDMA3TC[2:0]), and the various systemperipherals can be classified into two categories: master peripherals and slave peripherals. Masterperipherals are typically capable of initiating read and write transfers in the system and do not rely on theEDMA3 or on the CPU to perform transfers to and from them. The system master peripherals include theC64x+ Megamodule, the EDMA3 transfer controllers, VLYNQ, EMAC, HPI, PCI, and VPSS. Not all masterperipherals may connect to all slave peripherals. The supported connections are designated by "Y" inTable 4-1 .
Table 4-1. System Connection Matrix
SLAVE PERIPHERALS/MODULES
MASTER
DDR2C64x+ PCI SCR2, SCR6,PERIPHERALS/MODULES
MEMORY SCR4
(1)SDMA (MASTER BACK-END I/F) SCR7, SCR8
(1)CONTROLLER
C64x+ MDMA Y Y – Y
VPSS Y – –
PCI (SLAVE BACK-END I/F) Y Y Y Y
VLYNQ Y Y Y Y
EMAC Y Y Y Y
HPI Y Y Y Y
EDMA3TC's
Y Y Y Y Y(EDMA3TC2/TC1/TC0)
C64x+ CFG Y Y
(1) All the peripherals/modules that support a connection to SCR2, SCR4, SCR6, SCR7, and SCR8 have access to all peripherals/modulesconnected to those respective SCRs.
Figure 4-1 displays the DM6437 system interconnect block diagram. The following is a list that helps inthe interpretation of this diagram:The direction of the arrows indicates either a bus master or bus slave.The arrow originates at a bus master and terminates at a bus slave.The direction of the arrows does not indicate the direction of data flow. Data flow is typicallybi-directional for each of the documented bus paths.The pattern of each arrow's line indicates the clock rate at which it is operating— i.e., either DSP/3,DSP/6, or MXI/CLKIN clock rate.A peripheral may have multiple instances shown in Figure 4-1 for the following reason:
The peripheral/module has master port(s) for data transfers, as well as slave port(s) for registeraccess, data access, and/or memory access. Examples of these peripherals are C64x+Megamodule, EDMA3, VPSS, VLYNQ, HPI, EMAC, and PCI.
System Interconnect156 Submit Documentation Feedback
l TEXAS INSTRUMENTS
EMACControl
ModuleReg
EMACControl
ModuleRAM
Bridge8
SCR3
SCR1
VLYNQ
EMAC
HPI
VPSS
EDMA3TC0
EDMA3TC1
SCR5 Bridge2
L2Cache
EDMA3TC0
EDMA3TC1
Read
Write
64
64
64
64
32
32
32
EDMA3CC
EDMA3TC2
32 Bridge1 Bridge7
64 PCI
(DSP MasterI/F)
32
Bridge5
64
Bridge4
64
Bridge3
64
32
32
SCR4
Bridge6
32
PCIReg
32
32 32
32
32
32
EDMA3TC2
SCR6
HPI
VPSSReg
EMACReg
MDIO
GPIO
SystemReg
PSC
PLLC1
PLLC2
SCR2
UART0
UART1
HECC
I2C
PWM0
PWM1
PWM2
Timer0
Timer1
Timer2
SCR7
EMIFA
VLYNQ
SCR8
McBSP0
McBSP1
McASP0
DSP/3ClockRate
DSP/6ClockRate
MXI/CLKINClockRate
64x+
L2/L1
SDMA
DDR2Memory
Controller
(Memory/Register)
PCI
(DSP SlaveI/F)
Read
Write
64
64
Read
Write
64
64
64
64
64x+
MDMA
CFG
64
32
32
32
32
32
32
3232
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
64
DSP/6ClockRate
DSP/3ClockRate
DSP/6ClockRate
MXI/CLKINClockRate
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 4-1. System Interconnect Block Diagram
Submit Documentation Feedback System Interconnect 157
l TEXAS INSTRUMENTS
5 Device Operating Conditions
5.1 Absolute Maximum Ratings Over Operating Temperature Range (Unless Otherwise
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Noted)
(1)
Supply voltage ranges: Core (CV
DD
, V
DDA_1P1V
(2)
)
(3)
–0.5 V to 1.5 V
I/O, 3.3V (DV
DD33
)
(3)
–0.5 V to 4.2 V
I/O, 1.8V (DV
DDR2
, DDR_VDDDLL, PLL
PWR18
, V
DDA_1P8V
, MXV
DD
)
(3)
–0.5 to 2.5 V
Input voltage ranges: V
I
I/O, 3.3-V pins (except PCI-capable pins) –0.5 V to 4.2 V
V
I
I/O, 3.3-V pins PCI-capable pins –0.5 V to DV
DD33
+ 0.5 V
V
I
I/O, 1.8 V –0.5 V to 2.5 V
Output voltage ranges: V
O
I/O, 3.3-V pins (except PCI-capable pins) –0.5 V to 4.2 V
V
O
I/O, 3.3-V pins PCI-capable pins –0.5 V to DV
DD33
+ 0.5 V
V
O
I/O, 1.8 V –0.5 V to 2.5 V
Operating Junction temperature Commercial 0 °C to 90 °Cranges, T
J
:
Automotive (Q or S suffix) –40 °C to 125 °C
Storage temperature range, T
stg
(default) –65 °C to 150 °C
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operatingconditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2) Based on JESD22-C101C ( Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds ofMicroelectronic Components) testing the TMS320DM643xZDU device’s charged-device model (CDM) sensitivity classification is Class II(200 to < 500 V) when subjected to the required 3 discharges. When subjected to one discharge (+ and -), the classification is Class IIIwhich is the standard Texas Instruments' CDM design goal. All pins except the VDDA_1P1V (T20) pin associated with the DAC moduledemonstrate Class III performance.(3) All voltage values are with respect to V
SS.
Device Operating Conditions158 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRAAL9 SPRAALS
5.2 Recommended Operating Conditions
(1)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
MIN NOM MAX UNIT
(-7/-6/-5/-4/-L/-Q6/-Q5/-Q4
1.14 1.2 1.26 VSupply voltage, Core (CV
DD
,
devices)CV
DD
V
DDA_1P1V
)
(2)
(-7/-6/-5/-4/-L/-Q5 devices) 1.0 1.05 1.1 V
Supply voltage, I/O, 3.3V (DV
DD33
) 2.97 3.3 3.63 V
DV
DD
Supply voltage, I/O, 1.8V (DV
DDR2
, DDR_VDDDLL, PLL
PWR18
, V
DDA_1P8V
,
1.71 1.8 1.89 VMXV
DD
(3)
)
V
SS
Supply ground (V
SS
, V
SSA_1P8V
, V
SSA_1P1V
, DDR_VSSDLL, MXV
SS
(4)
) 0 0 0 V
DDR_VREF DDR2 reference voltage
(5)
0.49DV
DDR2
0.5DV
DDR2
0.51DV
DDR2
V
DDR_ZP DDR2 impedance control, connected via 200 resistor to V
SS
V
SS
V
DDR_ZN DDR2 impedance control, connected via 200 resistor to DV
DDR2
DV
DDR2
V
DAC_VREF DAC reference voltage input 0.475 0.5 0.525 V
DAC_RBIAS DAC biasing, connected via 4 k resistor to V
SSA_1P8V
V
SSA_1P8V
V
High-level input voltage, 3.3V (except PCI-capable and I2C pins) 2 V
High-level input voltage, MXI/ CLKIN 0.65MXV
DD
VV
IH
High-level input voltage, PCI 0.5DV
DD33
DV
DD33
+ 0.5 V
High-level input voltage, I2C 0.7DV
DD33
V
Low-level input voltage, 3.3V (except PCI-capable and I2C pins) 0.8 V
Low-level input voltage, MXI/ CLKIN 0.35MXV
DD
VV
IL
Low-level input voltage, PCI –0.5 0.3DV
DD33
V
Low-level input voltage, I2C 0 0.3DV
DD33
V
Commercial 0 90 °CT
J
Operating Junction temperature
(6) (7)
Automotive (Q or S suffix) –40 125 °C
Commercial 0 70 °CT
A
Operating Ambient temperature
(7)
Automotive (Q or S suffix) -40 85 °C
-7 devices 700 MHz
-Q6 devices 660 MHzDSP Operating Frequency(SYSCLK1), -6/ -L devices 600 MHzCV
DD
= 1.2 V
-5/-Q5 devices 500 MHz
F
SYSCLK1
(2)
-4/-Q4 devices 400 MHz
-7 devices 560 MHz
DSP Operating Frequency
-6/-L devices 450 MHz(SYSCLK1),
-5/-Q5 devices 400 MHzCV
DD
= 1.05 V
-4 devices 350 MHz
(1) The actual voltage must be determined at device power-up, and not be changed dynamically during run-time.(2) Applies to "tape and reel" part number counterparts as well. For more information, see Section 2.8 ,Device and Development-SupportTool Nomenclature.
(3) Oscillator 1.8 V power supply (MXV
DD
) can be connected to the same 1.8 V power supply as DV
DDR2
.(4) Oscillator ground (MXV
SS
) must be kept separate from other grounds and connected directly to the crystal load capacitor ground.(5) DDR_VREF is expected to equal 0.5DV
DDR2
of the transmitting device and to track variations in the DV
DDR2
.(6) In the absence of a heat sink or direct thermal attachment on the top of the device, use the following formula to determine the devicejunction temperature: T
J
= T
C
+ (Power x Psi
JT
). Power and T
C
can be measured by the user. Section 7.1 ,Thermal Data for ZWT andSection 7.1.1 ,Thermal Data for ZDU provide the junction-to-package top (PSI
JT
) value based on airflow in the system. In the presenceof a heat sink or direct thermal attachment on the top of the device, additional calculations and considerations must be taken intoaccount. For more detailed information on thermal considerations, measurements, and calculations, see the Thermal Considerations forTMS320DM64xx, TMS320DM64x, and TMS320C6000 Devices Application Report (literature number SPRAAL9 ).(7) Applications must meet both the Operating Junction Temperature and Operating Ambient Temperature requirements. For more detailedinformation on thermal considerations, measurements, and calculations, see the Thermal Considerations for TMS320DM64xx,TMS320DM64x, and TMS320C6000 Devices Application Report (literature number SPRAAL9 ).
Submit Documentation Feedback Device Operating Conditions 159
l TEXAS INSTRUMENTS SPRAAOG
5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Temperature (Unless Otherwise Noted)
PARAMETER TEST CONDITIONS
(1)
MIN TYP MAX UNIT
High-level output voltage (3.3V I/O except
DV
DD33
= MIN, I
OH
= MAX 2.4 VPCI-capable and I2C pins)V
OH
High-level output voltage (3.3V I/O
I
OH
= -0.5 mA, DV
DD33
= 3.3 V 0.9DV
DD33
(2)
VPCI-capable pins)
Low-level output voltage (3.3V I/O except
DV
DD33
= MIN, I
OL
= MAX 0.4 VPCI-capable and I2C pins)
V
OL
Low-level output voltage (3.3V I/O
I
OH
= 1.5 mA, DV
DD33
= 3.3 V 0.1DV
DD33
(2)
VPCI-capable pins)
Low-level output voltage (3.3V I/O I2C pins) I
O
= 3 mA 0 0.4 V
V
I
= V
SS
to DV
DD33
with internal pullup resistor
50 100 250 µA(4)Input current [DC] (except I2C and PCIcapable pins)
V
I
= V
SS
to DV
DD33
with internal pulldown
–250 –100 –50 µAresistor
(4)
Input current [DC] (I2C) V
I
= V
SS
to DV
DD33
±10 µAI
I
(3)
0 < V
I
< DV
DD33
= 3.3 V without internal resistor ±50 µA
0 < V
I
< DV
DD33
= 3.3 V with internal pullup
50 250 µAInput current (PCI capable pins) [DC]
(5)
resistor
(4)
0 < V
I
< DV
DD33
= 3.3 V with internal pulldown
–250 –50 µAresistor
(4)
CLK_OUT0/PWM2/GPIO[84] and
-8 mAVLYNQ_CLOCK/PCICLK/GP[57]
DDR2 –13.4 mAI
OH
High-level output current [DC]
PCI-capable pins –0.5
(2)
mA
All other peripherals -4 mA
CLK_OUT0/PWM2/GPIO[84] and
8 mAVLYNQ_CLOCK/PCICLK/GP[57]
DDR2 13.4 mAI
OL
Low-level output current [DC]
PCI-capable pins 1.5
(2)
mA
All other peripherals 4 mA
V
O
= DV
DD33
or V
SS
; internal pull disabled ±50 µAI
OZ
(6)
I/O Off-state output current
V
O
= DV
DD33
or V
SS
; internal pull enabled ±100 µA
CV
DD
= 1.2 V, DSP clock = 700 MHz 597 mA
CV
DD
= 1.2 V, DSP clock = 660 MHz 560 mA
CV
DD
= 1.2 V, DSP clock = 600 MHz 524 mA
CV
DD
= 1.2 V, DSP clock = 500 MHz 460 mAI
CDD
Core (CV
DD
, V
DDA_1P1V
) supply current
(7)
CV
DD
= 1.2 V, DSP clock = 400 MHz 392 mA
CV
DD
= 1.05 V, DSP clock = 560 MHz 442 mA
CV
DD
= 1.05 V, DSP clock = 450 MHz 372 mA
CV
DD
= 1.05 V, DSP clock = 400 MHz 341 mA
(1) For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.(2) These rated numbers are from the PCI Local Bus Specification Revision 2.3. The DC specifications and AC specifications are defined inTable 4-3 (DC Specifications for 3.3V Signaling) and Table 4-4 (AC Specifications for 3.3V Signaling), respectively.(3) I
I
applies to input-only pins and bi-directional pins. For input-only pins, I
I
indicates the input leakage current. For bi-directional pins, I
Iindicates the input leakage current and off-state (Hi-Z) output leakage current.(4) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.(5) PCI input leakage currents include Hi-Z output leakage for all bidirectional buffers with 3-state outputs.(6) I
OZ
applies to output-only pins, indicating off-state (Hi-Z) output leakage current.(7) Measured under the following conditions: 60% DSP CPU utilization doing typical activity (peripheral configurations, other housekeepingactivities); DDR2 Memory Controller at 50% utilization (135 MHz), 50% writes, 32 bits, 50% bit switching; 2 MHz McBSP0 at 100%utilization and 50% switching; Timer0 at 100% utilization. At room temperature (25 C) for typical process ZWT devices. The actualcurrent draw varies across manufacturing processes and is highly application-dependent. DM643x DMP devices are offered in two basicoptions: lower-power option and high-performance option. Low-power devices offer lower power consumption across temperature andvoltage when compared with high-performance devices. However, high-performance devices offer higher operating speeds. For moredetails on core and I/O activity, high-performance and low-power device power consumption, as well as information relevant to boardpower supply design, see the TMS320DM643x Power Consumption Summary Application Report (literature number SPRAAO6 ).
160 Device Operating Conditions Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Temperature(Unless Otherwise Noted) (continued)
PARAMETER TEST CONDITIONS
(1)
MIN TYP MAX UNIT
DV
DD
= 3.3 V, CV
DD
= 1.2 V, DSP clock = 700
13 mAMHz
DV
DD
= 3.3 V, CV
DD
= 1.2 V, DSP clock = 660
13 mAMHz
DV
DD
= 3.3 V, CV
DD
= 1.2 V, DSP clock = 600
13 mAMHz
DV
DD
= 3.3 V, CV
DD
= 1.2 V, DSP clock = 500
13 mAMHzI
DDD
3.3V I/O (DV
DD33
) supply current
(7)
DV
DD
= 3.3 V, CV
DD
= 1.2 V, DSP clock = 400
13 mAMHz
DV
DD
= 3.3 V, CV
DD
= 1.05 V, DSP clock = 560
13 mAMHz
DV
DD
= 3.3 V, CV
DD
= 1.05 V, DSP clock = 450
13 mAMHz
DV
DD
= 3.3 V, CV
DD
= 1.05 V, DSP clock = 400
13 mAMHz
DV
DD
= 1.8 V, CV
DD
= 1.2 V, DSP clock = 700
94 mAMHz
DV
DD
= 1.8 V, CV
DD
= 1.2 V, DSP clock = 660
94 mAMHz
DV
DD
= 1.8 V, CV
DD
= 1.2 V, DSP clock = 600
93 mAMHz
DV
DD
= 1.8 V, CV
DD
= 1.2 V, DSP clock = 500
92 mAMHz1.8V I/O (DV
DDR2
, DDR_VDDDLL, PLLV
PRW18
,I
DDD
V
DDA_1P8V
, MXV
DD
) supply current
(7)
DV
DD
= 1.8 V, CV
DD
= 1.2 V, DSP clock = 400
91 mAMHz
DV
DD
= 1.8 V, CV
DD
= 1.05 V, DSP clock = 560
74 mAMHz
DV
DD
= 1.8 V, CV
DD
= 1.05 V, DSP clock = 450
73 mAMHz
DV
DD
= 1.8 V, CV
DD
= 1.05 V, DSP clock = 400
72 mAMHz
C
I
Input capacitance 5 pF
C
o
Output capacitance 5 pF
Submit Documentation Feedback Device Operating Conditions 161
l TEXAS INSTRUMENTS \ 20 : SD 0 [see Nola)
6 Peripheral Information and Electrical Specifications
6.1 Parameter Information
Transmission Line
4.0 pF 1.85 pF
Z0 = 50
(see Note)
Tester Pin Electronics Data Sheet Timing Reference Point
Output
Under
Test
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must
be taken into account. A transmission line with a delay of 2 ns can be used to produce the desired transmission line effect. The transmission
line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns) from the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.
42 3.5 nH
Device Pin
(see Note)
6.1.1 3.3-V Signal Transition Levels
Vref
Vref = VIL MAX (or VOL MAX)
Vref = VIH MIN (or VOH MIN)
6.1.2 3.3-V Signal Transition Rates
6.1.3 Timing Parameters and Board Routing Analysis
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 6-1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. Thisload capacitance value does not indicate the maximum load the device is capable of driving.
All input and output timing parameters are referenced to V
ref
for both "0" and "1" logic levels. For 3.3 V I/O,V
ref
= 1.5 V. For 1.8 V I/O, V
ref
= 0.9 V.
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to V
IL
MAX and V
IH
MIN for input clocks,V
OL
MAX and V
OH
MIN for output clocks.
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
All timings are tested with an input edge rate of 4 volts per nanosecond (4 V/ns).
The timing parameter values specified in this data sheet do not include delays by board routings. As agood board design practice, such delays must always be taken into account. Timing values may beadjusted by increasing/decreasing such delays.
Peripheral Information and Electrical Specifications162 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRA839 SPRAALS ww com/dsggcwer www.ti.com/dsgpower SPRAALS
6.2 Recommended Clock and Control Signal Transition Behavior
6.3 Power Supplies
6.3.1 Power-Supply Sequencing
6.3.2 Power-Supply Design Considerations
6.3.3 Power-Supply Decoupling
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
TI recommends utilizing the available I/O buffer information specification (IBIS) models to analyze thetiming characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a givensystem, see the Using IBIS Models for Timing Analysis application report (literature number SPRA839 ). Ifneeded, external logic hardware such as buffers may be used to compensate any timing differences.
For the DDR2 memory controller interface, it is not necessary to use the IBIS models to analyze timingcharacteristics. TI provides a PCB routing rules solution that describes the routing rules to ensure theDDR2 memory controller interface timings are met. See the Implementing DDR2 PCB Layout on theTMS320DM643x DMP DMSoC Application Report (literature number SPRAAL6 ).
All clocks and control signals must transition between V
IH
and V
IL
(or between V
IL
and V
IH
) in a monotonicmanner.
For more information regarding TI's power management products and suggested devices to power TIDSPs, visit www.ti.com/dsppower .
The DM6437 includes one core supply (CV
DD
), and two I/O supplies—DV
DD33
and DV
DDR2
. To ensureproper device operation, a specific power-up sequence must be followed. Some TI power-supply devicesinclude features that facilitate power sequencing—for example, Auto-Track and Slow-Start/Enablefeatures. For more information on TI power supplies and their features, visit www.ti.com/dsppower .
Here is a summary of the power sequencing requirements:The power ramp order must be DV
DD33
before DV
DDR2
, and DV
DDR2
before CV
DD
—meaning duringpower up, the voltage at the DV
DDR2
rail should never exceed the voltage at the DV
DD33
rail. Similarly,the voltage at the CV
DD
rail should never exceed the voltage at the DV
DDR2
rail.From the time that power ramp begins, all power supplies (DV
DD33
, DV
DDR2
, CV
DD
)must be stablewithin 200 ms. The term "stable" means reaching the recommended operating condition (seeSection 5.2 ,Recommended Operating Conditions table).
Core and I/O supply voltage regulators should be located close to the DSP to minimize inductance andresistance in the power delivery path. Additionally, when designing for high-performance applicationsutilizing the DM6437 device, the PC board should include separate power planes for core, I/O, andground; all bypassed with high-quality low-ESL/ESR capacitors.
In order to properly decouple the supply planes from system noise, place as many capacitors (caps) aspossible close to the DSP. These caps need to be close to the DSP, no more than 1.25 cm maximumdistance to be effective. Physically smaller caps are better, such as 0402, but need to be evaluated from ayield/manufacturing point-of-view. Parasitic inductance limits the effectiveness of the decouplingcapacitors, therefore physically smaller capacitors should be used while maintaining the largest availablecapacitance value.
Larger caps for each supply can be placed further away for bulk decoupling. Large bulk caps (on the orderof 100 µF) should be furthest away, but still as close as possible. Large caps for each supply should beplaced outside of the BGA footprint.
As with the selection of any component, verification of capacitor availability over the product's productionlifetime should be considered.
For more details on capacitor usage and placement, see the Implementing DDR2 PCB Layout on theTMS320DM643x DMP DMSoC Application Report (literature number SPRAAL6 ).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 163
l TEXAS INSTRUMENTS
6.3.4 DM6437 Power and Clock Domains
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The DM6437 includes one single power domain the "Always On" power domain. The "Always On"power domain is always on when the chip is on. The "Always On" domain is powered by the CV
DD
pins ofthe DM6437. All DM6437 modules lie within the "Always On" power domain. Table 6-1 provides a listing ofthe DM6437 clock domains.
One primary reference clock is required for the DM6437 device. It can be either a crystal input or driven byexternal oscillators. A 27-MHz crystal is recommended for the PLLs, which generate the internal clocks forthe digital media processor (DMP), peripherals, and EDMA3.
The DM6437 architecture is divided into the power and clock domains shown in Table 6-1 .Table 6-2 andTable 6-3 further discuss the clock domains and their ratios. Figure 6-4 shows the Clock Domain blockdiagram.
164 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-1. DM6437 Power and Clock Domains
Power Domain Clock Domain Peripheral/Module
Always On CLKIN UART0
Always On CLKIN UART1
Always On CLKIN HECC
Always On CLKIN I2C
Always On CLKIN Timer0
Always On CLKIN Timer1
Always On CLKIN Timer2
Always On CLKIN PWM0
Always On CLKIN PWM1
Always On CLKIN PWM2
Always On CLKDIV3 DDR2
Always On CLKDIV3 VPSS
Always On CLKDIV3 EDMA
Always On CLKDIV3 PCI
Always On CLKDIV3 SCR
Always On CLKDIV6 GPSC
Always On CLKDIV6 LPSCs
Always On CLKDIV6 PLLC1
Always On CLKDIV6 PLLC2
Always On CLKDIV6 Ice Pick
Always On CLKDIV6 EMIFA
Always On CLKDIV6 HPI
Always On CLKDIV6 VLYNQ
Always On CLKDIV6 EMAC
Always On CLKDIV6 McASP0
Always On CLKDIV6 McBSP0
Always On CLKDIV6 McBSP1
Always On CLKDIV6 GPIO
Always On CLKDIV1 C64x+ CPU
Table 6-2. DM6437 Clock Domains
DOMAIN CLOCK FIXED RATIO vs. EXAMPLESUBSYSTEM CLOCK DOMAIN
SOURCE SYSCLK1 FREQUENCY FREQUENCY (MHz)
Peripherals (CLKIN Domain) CLKIN PLLC1 AUXCLK
(1)
27 MHz
DSP Subsystem CLKDIV1 PLLC1 SYSCLK1 1:1 594 MHz
EDMA3 CLKDIV3 PLLC1 SYSCLK2 1:3 198 MHz
VPSS CLKDIV3 PLLC1 SYSCLK2 1:3 198 MHz
Peripherals (CLKDIV3 Domain) CLKDIV3 PLLC1 SYSCLK2 1:3 198 MHz
Peripherals (CLKDIV6 Domain) CLKDIV6 PLLC1 SYSCLK3 1:6 99 MHz
(1) PLLC1 AUXCLK runs at exactly the same frequency as the device clock source from the MXI/CLKIN pin.
The CLKDIV1:CLKDIV3:CLKDIV6 ratio must be strictly followed by programming the PLL Controller 1(PLLC1) PLLDIV1, PLLDIV2, and PLLDIV3 registers appropriately (see Table 6-3 ).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 165
l TEXAS INSTRUMENTS
DSP Subsystem
SYSCLK1
SYSCLK3
SCR
EDMA
VPFE
VPBE
DACs
DDR2 PHY
DDR2 VTP
DDR2 Mem Ctlr
PLLDIV2 (/10)
PLLDIV1 (/2)
BPDIV
PLL Controller 2
PLL Controller 1
PLLDIV2 (/3)
PLLDIV3 (/6)
PLLDIV1 (/1)
SYSCLK2
UARTs (x2)
I2C
Timers (x3)
PWMs (x3)
EMAC
EMIFA
VLYNQ
HPI
McASP0
McBSP0
GPIO
McBSP1
PCI
MXI/CLKIN
(27 MHz)
PCLK
VPBECLK
OSCDIV1 (/1)
HECC
OBSCLK
(CLKOUT0 Pin)
BPDIV (/1)
SYSCLKBP
AUXCLK
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-3. PLLC1 Programming for CLKDIV1, CLKDIV3, CLKDIV6 Domains
CLKDIV1 DOMAIN CLKDIV3 DOMAIN CLKDIV6 DOMAIN(SYSCLK1) (SYSCLK2) (SYSCLK3)
PLL1 PLL1 PLL1PLLDIV1.RATIO PLLDIV2.RATIO PLLDIV3.RATIODivide-Down Divide-Down Divide-Down
DIV1 /1 0 /3 2 /6 5
DIV2 /2 1 /6 5 /12 11
DIV3 /3 2 /9 8 /18 17
Figure 6-4. PLL1 and PLL2 Clock Domain Block Diagram
For further detail on PLL1 and PLL2, see the structure block diagrams Figure 6-5 and Figure 6-6 ,respectively.
Peripheral Information and Electrical Specifications166 Submit Documentation Feedback
l TEXAS INSTRUMENTS ¢ L ¢ L \__F SPRU978
PLLDIV1(/1)
PLLDIV3(/6)
PLLDIV2(/3)
SYSCLK1
(CLKDIV1Domain)
SYSCLK3
(CLKDIV6Domain)
SYSCLK2
(CLKDIV3Domain)
1
0
PLLM
PLL
0
1
BPDIV
CLKMODE
CLKIN
OSCIN
PLLEN
SYSCLKBP
(VPSS-VPBE
ClockSource)
OBSCLK
(CLKOUT0Pin)
PLLOUT
AUXCLK
(CLKINDomain)
OSCDIV1
PLLDIV2 (/10)
PLLDIV1 (/2)
1
0
PLLM
PLL
0
1
BPDIV
CLKMODE
CLKIN
OSCIN
PLLEN
PLL2_SYSCLK2
(VPSS−VPBE)
PLL2_SYSCLK1
(DDR2 PHY)
PLL2_SYSCLKBP
(DDR2 VTP)
PLLOUT
6.3.5 Power and Sleep Controller (PSC)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 6-5. PLL1 Structure Block Diagram
Figure 6-6. PLL2 Structure Block Diagram
The Power and Sleep Controller (PSC) controls power by turning off unused power domains or by gatingoff clocks to individual peripherals/modules. The DM6437 device only utilizes the clock gating feature ofthe PSC for power savings. The PSC consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs).The GPSC contains memory mapped registers, PSC interrupt control, and a state machine for eachperipheral/module. An LPSC is associated with each peripheral/module and provides clock and resetcontrol. The LPSCs for DM6437 are shown in Table 6-4 . The PSC Register memory map is given inTable 6-5 . For more details on the PSC, see the TMS320DM643x DMP DSP Subsystem Reference Guide(literature number SPRU978 ).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 167
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-4. DM6437 LPSC Assignments
LPSC Peripheral/Module LPSC Peripheral/Module LPSC Peripheral/ModuleNumber Number Number
0 VPSS DMA 14 EMIFA 28 TIMER1
1 VPSS MMR 15 PCI 29 Reserved
2 EDMACC 16 McBSP0 30 Reserved
3 EDMATC0 17 McBSP1 31 Reserved
4 EDMATC1 18 I2C 32 Reserved
5 EDMATC2 19 UART0 33 Reserved
6 EMAC Memory Controller 20 UART1 34 Reserved
7 MDIO 21 Reserved 35 Reserved
8 EMAC 22 HECC 36 Reserved
9 McASP0 23 PWM0 37 Reserved
10 Reserved 24 PWM1 38 Reserved
11 VLYNQ 25 PWM2 39 C64x+ CPU
12 HPI 26 GPIO 40 Reserved
13 DDR2 Memory Controller 27 TIMER0
Table 6-5. PSC Register Memory Map
REGISTERHEX ADDRESS RANGE DESCRIPTIONACRONYM
0x01C4 1000 PID Peripheral Revision and Class Information Register
0x01C4 1004 - 0x01C4 100F Reserved
0x01C4 1010 – Reserved
0x01C4 1014 – Reserved
0x01C4 1018 INTEVAL Interrupt Evaluation Register
0x01C4 101C - 0x01C4 103F Reserved
0x01C4 1040 – Reserved
0x01C4 1044 MERRPR1 Module Error Pending 1 (mod 32- 63) Register
0x01C4 1048 - 0x01C4 104F Reserved
0x01C4 1050 – Reserved
0x01C4 1054 MERRCR1 Module Error Clear 1 (mod 32 - 63) Register
0x01C4 1058 - 0x01C4 105F Reserved
0x01C4 1060 – Reserved
0x01C4 1064 - 0x01C4 1067 Reserved
0x01C4 1068 – Reserved
0x01C4 106C - 0x01C4 111F Reserved
0x01C4 1120 PTCMD Power Domain Transition Command Register
0x01C4 1124 - 0x01C4 1127 Reserved
0x01C4 1128 PTSTAT Power Domain Transition Status Register
0x01C4 112C - 0x01C4 11FF Reserved
0x01C4 1200 PDSTAT0 Power Domain Status 0 Register (Always On)
0x01C4 1204 - 0x01C4 12FF Reserved
0x01C4 1300 PDCTL0 Power Domain Control 0 Register (Always On)
0x01C4 1304 - 0x1C4 150F Reserved
0x01C4 1510 – Reserved
0x01C4 1514 – Reserved
0x01C4 1518 - 0x01C4 15FF Reserved
0x01C4 1600 - 0x01C4 17FF Reserved
Peripheral Information and Electrical Specifications168 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-5. PSC Register Memory Map (continued)
REGISTERHEX ADDRESS RANGE DESCRIPTIONACRONYM
0x01C4 1800 MDSTAT0 Module Status 0 Register (VPSS DMA)
0x01C4 1804 MDSTAT1 Module Status 1 Register (VPSS MMR)
0x01C4 1808 MDSTAT2 Module Status 2 Register (EDMACC)
0x01C4 180C MDSTAT3 Module Status 3 Register (EDMATC0)
0x01C4 1810 MDSTAT4 Module Status 4 Register (EDMATC1)
0x01C4 1814 MDSTAT5 Module Status 5 Register (EDMATC2)
0x01C4 1818 MDSTAT6 Module Status 6 Register (EMAC Memory Controller)
0x01C4 181C MDSTAT7 Module Status 7 Register (MDIO)
0x01C4 1820 MDSTAT8 Module Status 8 Register (EMAC)
0x01C4 1824 MDSTAT9 Module Status 9 Register (McASP0)
0x01C4 1828 – Reserved
0x01C4 182C MDSTAT11 Module Status 11 Register (VLYNQ)
0x01C4 1830 MDSTAT12 Module Status 12 Register (HPI)
0x01C4 1834 MDSTAT13 Module Status 13 Register (DDR2)
0x01C4 1838 MDSTAT14 Module Status 14 Register (EMIFA)
0x01C4 183C MDSTAT15 Module Status 15 Register (PCI)
0x01C4 1840 MDSTAT16 Module Status 16 Register (McBSP0)
0x01C4 1844 MDSTAT17 Module Status 17 Register (McBSP1)
0x01C4 1848 MDSTAT18 Module Status 18 Register (I2C)
0x01C4 184C MDSTAT19 Module Status 19 Register (UART0)
0x01C4 1850 MDSTAT20 Module Status 20 Register (UART1)
0x01C4 1854 – Reserved
0x01C4 1858 MDSTAT22 Module Status 22 Register (HECC)
0x01C4 185C MDSTAT23 Module Status 23 Register (PWM0)
0x01C4 1860 MDSTAT24 Module Status 24 Register (PWM1)
0x01C4 1864 MDSTAT25 Module Status 25 Register (PWM2)
0x01C4 1868 MDSTAT26 Module Status 26 Register (GPIO)
0x01C4 186C MDSTAT27 Module Status 27 Register (TIMER0)
0x01C4 1870 MDSTAT28 Module Status 28 Register (TIMER1)
0x01C4 1874 - 0x01C4 189B Reserved
0x01C4 189C MDSTAT39 Module Status 39 Register (C64x+ CPU)
0x01C4 18A0 – Reserved
0x01C4 18A4 - 0x01C4 19FF Reserved
0x01C4 1A00 MDCTL0 Module Control 0 Register (VPSS DMA)
0x01C4 1A04 MDCTL1 Module Control 1 Register (VPSS MMR)
0x01C4 1A08 MDCTL2 Module Control 2 Register (EDMACC)
0x01C4 1A0C MDCTL3 Module Control 3 Register (EDMATC0)
0x01C4 1A10 MDCTL4 Module Control 4 Register (EDMATC1)
0x01C4 1A14 MDCTL5 Module Control 5 Register (EDMATC2)
0x01C4 1A18 MDCTL6 Module Control 6 Register (EMAC Memory Controller)
0x01C4 1A1C MDCTL7 Module Control 7 Register (MDIO)
0x01C4 1A20 MDCTL8 Module Control 8 Register (EMAC)
0x01C4 1A24 MDCTL9 Module Control 9 Register (McASP0)
0x01C4 1A28 – Reserved
0x01C4 1A2C MDCTL11 Module Control 11 Register (VLYNQ)
0x01C4 1A30 MDCTL12 Module Control 12 Register (HPI)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 169
l TEXAS INSTRUMENTS SPRU987
6.4 Enhanced Direct Memory Access (EDMA3) Controller
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-5. PSC Register Memory Map (continued)
REGISTERHEX ADDRESS RANGE DESCRIPTIONACRONYM
0x01C4 1A34 MDCTL13 Module Control 13 Register (DDR2)
0x01C4 1A38 MDCTL14 Module Control 14 Register (EMIFA)
0x01C4 1A3C MDCTL15 Module Control 15 Register (PCI)
0x01C4 1A40 MDCTL16 Module Control 16 Register (McBSP0)
0x01C4 1A44 MDCTL17 Module Control 17 Register (McBSP1)
0x01C4 1A48 MDCTL18 Module Control 18 Register (I2C)
0x01C4 1A4C MDCTL19 Module Control 19 Register (UART0)
0x01C4 1A50 MDCTL20 Module Control 20 Register (UART1)
0x01C4 1A54 – Reserved
0x01C4 1A58 MDCTL22 Module Control 22 Register (HECC)
0x01C4 1A5C MDCTL23 Module Control 23 Register (PWM0)
0x01C4 1A60 MDCTL24 Module Control 24 Register (PWM1)
0x01C4 1A64 MDCTL25 Module Control 25 Register (PWM2)
0x01C4 1A68 MDCTL26 Module Control 26 Register (GPIO)
0x01C4 1A6C MDCTL27 Module Control 27 Register (TIMER0)
0x01C4 1A70 MDCTL28 Module Control 28 Register (TIMER1)
0x01C4 1A74 - 0x01C4 1A9B Reserved
0x01C4 1A9C MDCTL39 Module Control 39 Register (C64x+ CPU)
0x01C4 1AA0 – Reserved
0x01C4 1AA4 - 0x01C4 1FFF Reserved
The EDMA controller handles all data transfers between memories and the device slave peripherals onthe DM6437 device. These data transfers include cache servicing, non-cacheable memory accesses,user-programmed data transfers, and host accesses. These are summarized as follows:Transfer to/from on-chip memories
– DSP L1D memory
– DSP L2 memoryTransfer to/from external storage
– DDR2 SDRAM
– NAND flash
– Asynchronous EMIF (EMIFA)Transfer to/from peripherals/hosts
– VLYNQ
– HPI
– McBSP0/1
– McASP0
– PWM
– UART0/1
– HECC
– PCI
The EDMA supports two addressing modes: constant addressing and increment addressing. On theDM6437, constant addressing mode is not supported by any peripheral or internal memory. For moreinformation on these two addressing modes, see the TMS320DM643x DMP Enhanced Direct MemoryAccess (EDMA3) Controller User’s Guide (literature number SPRU987 ).
Peripheral Information and Electrical Specifications170 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU987
6.4.1 EDMA3 Channel Synchronization Events
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The EDMA supports up to 64 EDMA channels which service peripheral devices and external memory.Table 6-6 lists the source of EDMA synchronization events associated with each of the programmableEDMA channels. For the DM6437 device, the association of an event to a channel is fixed; each of theEDMA channels has one specific event associated with it. These specific events are captured in theEDMA event registers (ER, ERH) even if the events are disabled by the EDMA event enable registers(EER, EERH). For more detailed information on the EDMA module and how EDMA events are enabled,captured, processed, linked, chained, and cleared, etc., see the TMS320DM643x DMP Enhanced DirectMemory Access (EDMA3) Controller User’s Guide (literature number SPRU987 ).
Table 6-6. DM6437 EDMA Channel Synchronization Events
(1)
EDMA
EVENT NAME EVENT DESCRIPTIONCHANNEL
0-1 – Reserved
2 XEVT0 McBSP0 Transmit Event
3 REVT0 McBSP0 Receive Event
4 XEVT1 McBSP1 Transmit Event
5 REVT1 McBSP1 Receive Event
6 HISTEVT VPSS Histogram Event
7 H3AEVT VPSS H3A Event
8 PRVUEVT VPSS Previewer Event
9 RSZEVT VPSS Resizer Event
10 AXEVTE0 McASP0 Transmit Event Even
11 AXEVTO0 McASP0 Transmit Event Odd
12 AXEVT0 McASP0 Transmit Event
13 AREVTE0 McASP0 Receive Event Even
14 AREVTO0 McASP0 Receive Event Odd
15 AREVT0 McASP0 Receive Event
16-21 – Reserved
22 URXEVT0 UART 0 Receive Event
23 UTXEVT0 UART 0 Transmit Event
24 URXEVT1 UART 1 Receive Event
25 UTXEVT1 UART 1 Transmit Event
26 – Reserved
27 – Reserved
28 ICREVT I2C Receive Event
29 ICXEVT I2C Transmit Event
30-31 – Reserved
32 GPINT0 GPIO 0 Interrupt
33 GPINT1 GPIO 1 Interrupt
34 GPINT2 GPIO 2 Interrupt
35 GPINT3 GPIO 3 Interrupt
36 GPINT4 GPIO 4 Interrupt
37 GPINT5 GPIO 5 Interrupt
38 GPINT6 GPIO 6 Interrupt
39 GPINT7 GPIO 7 Interrupt
40 GPBNKINT0 GPIO Bank 0 Interrupt
41 GPBNKINT1 GPIO Bank 1 Interrupt
(1) In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternatetransfer completion events. For more detailed information on EDMA event-transfer chaining, see the Document Support section for theEnhanced Direct Memory Access (EDMA) Controller Reference Guide.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 171
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-6. DM6437 EDMA Channel Synchronization Events (continued)
EDMA
EVENT NAME EVENT DESCRIPTIONCHANNEL
42 GPBNKINT2 GPIO Bank 2 Interrupt
43 GPBNKINT3 GPIO Bank 3 Interrupt
44 GPBNKINT4 GPIO Bank 4 Interrupt
45 GPBNKINT5 GPIO Bank 5 Interrupt
46 GPBNKINT6 GPIO Bank 6 Interrupt
47 – Reserved
48 TEVTL0 Timer 0 Event Low Interrupt
49 TEVTH0 Timer 0 Event High Interrupt
50 TEVTL1 Timer 1 Event Low Interrupt
51 TEVTH1 Timer 1 Evemt High Interrupt
52 PWM0 PWM 0 Event
53 PWM1 PWM 1 Event
54 PWM2 PWM 2 Event
55-63 – Reserved
Peripheral Information and Electrical Specifications172 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.4.2 EDMA Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-7 lists the EDMA registers, their corresponding acronyms, and DM6437 device memory locations.
Table 6-7. DM6437 EDMA Registers
HEX ADDRESS ACRONYM REGISTER NAME
Channel Controller Registers
0x01C0 0000 - 0x01C0 0003 Reserved
0x01C0 0004 CCCFG EDMA3CC Configuration Register
0x01C0 0008 - 0x01C0 01FF Reserved
Global Registers
0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping to PaRAM Register
0x01C0 0204 QCHMAP1 QDMA Channel 1 Mapping to PaRAM Register
0x01C0 0208 QCHMAP2 QDMA Channel 2 Mapping to PaRAM Register
0x01C0 020C QCHMAP3 QDMA Channel 3 Mapping to PaRAM Register
0x01C0 0210 QCHMAP4 QDMA Channel 4 Mapping to PaRAM Register
0x01C0 0214 QCHMAP5 QDMA Channel 5 Mapping to PaRAM Register
0x01C0 0218 QCHMAP6 QDMA Channel 6 Mapping to PaRAM Register
0x01C0 021C QCHMAP7 QDMA Channel 7 Mapping to PaRAM Register
0x01C0 0240 DMAQNUM0 DMA Queue Number Register 0 (Channels 00 to 07)
0x01C0 0244 DMAQNUM1 DMA Queue Number Register 1 (Channels 08 to 15)
0x01C0 0248 DMAQNUM2 DMA Queue Number Register 2 (Channels 16 to 23)
0x01C0 024C DMAQNUM3 DMA Queue Number Register 3 (Channels 24 to 31)
0x01C0 0250 DMAQNUM4 DMA Queue Number Register 4 (Channels 32 to 39)
0x01C0 0254 DMAQNUM5 DMA Queue Number Register 5 (Channels 40 to 47)
0x01C0 0258 DMAQNUM6 DMA Queue Number Register 6 (Channels 48 to 55)
0x01C0 025C DMAQNUM7 DMA Queue Number Register 7 (Channels 56 to 63)
0x01C0 0260 QDMAQNUM CC QDMA Queue Number
0x01C0 0264 - 0x01C0 0283 Reserved
0x01C0 0284 QUEPRI Queue Priority Register
0x01C0 0288 - 0x01C0 02FF Reserved
0x01C0 0300 EMR Event Missed Register
0x01C0 0304 EMRH Event Missed Register High
0x01C0 0308 EMCR Event Missed Clear Register
0x01C0 030C EMCRH Event Missed Clear Register High
0x01C0 0310 QEMR QDMA Event Missed Register
0x01C0 0314 QEMCR QDMA Event Missed Clear Register
0x01C0 0318 CCERR EDMA3CC Error Register
0x01C0 031C CCERRCLR EDMA3CC Error Clear Register
0x01C0 0320 EEVAL Error Evaluate Register
0x01C0 0340 DRAE0 DMA Region Access Enable Register for Region 0
0x01C0 0344 DRAEH0 DMA Region Access Enable Register High for Region 0
0x01C0 0348 DRAE1 DMA Region Access Enable Register for Region 1
0x01C0 034C DRAEH1 DMA Region Access Enable Register High for Region 1
0x01C0 0350 – Reserved
0x01C0 0354 – Reserved
0x01C0 0358 – Reserved
0x01C0 035C – Reserved
0x01C0 0360 - 0x01C0 037C Reserved
0x01C0 0380 QRAE0 QDMA Region Access Enable Register for Region 0
Submit Documentation Feedback Peripheral Information and Electrical Specifications 173
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-7. DM6437 EDMA Registers (continued)
HEX ADDRESS ACRONYM REGISTER NAME
0x01C0 0384 QRAE1 QDMA Region Access Enable Register for Region 1
0x01C0 0388 – Reserved
0x01C0 038C – Reserved
0x01C0 0390 - 0x01C0 039C Reserved
0x01C0 0400 Q0E0 Event Q0 Entry 0 Register
0x01C0 0404 Q0E1 Event Q0 Entry 1 Register
0x01C0 0408 Q0E2 Event Q0 Entry 2 Register
0x01C0 040C Q0E3 Event Q0 Entry 3 Register
0x01C0 0410 Q0E4 Event Q0 Entry 4 Register
0x01C0 0414 Q0E5 Event Q0 Entry 5 Register
0x01C0 0418 Q0E6 Event Q0 Entry 6 Register
0x01C0 041C Q0E7 Event Q0 Entry 7 Register
0x01C0 0420 Q0E8 Event Q0 Entry 8 Register
0x01C0 0424 Q0E9 Event Q0 Entry 9 Register
0x01C0 0428 Q0E10 Event Q0 Entry 10 Register
0x01C0 042C Q0E11 Event Q0 Entry 11 Register
0x01C0 0430 Q0E12 Event Q0 Entry 12 Register
0x01C0 0434 Q0E13 Event Q0 Entry 13 Register
0x01C0 0438 Q0E14 Event Q0 Entry 14 Register
0x01C0 043C Q0E15 Event Q0 Entry 15 Register
0x01C0 0440 Q1E0 Event Q1 Entry 0 Register
0x01C0 0444 Q1E1 Event Q1 Entry 1 Register
0x01C0 0448 Q1E2 Event Q1 Entry 2 Register
0x01C0 044C Q1E3 Event Q1 Entry 3 Register
0x01C0 0450 Q1E4 Event Q1 Entry 4 Register
0x01C0 0454 Q1E5 Event Q1 Entry 5 Register
0x01C0 0458 Q1E6 Event Q1 Entry 6 Register
0x01C0 045C Q1E7 Event Q1 Entry 7 Register
0x01C0 0460 Q1E8 Event Q1 Entry 8 Register
0x01C0 0464 Q1E9 Event Q1 Entry 9 Register
0x01C0 0468 Q1E10 Event Q1 Entry 10 Register
0x01C0 046C Q1E11 Event Q1 Entry 11 Register
0x01C0 0470 Q1E12 Event Q1 Entry 12 Register
0x01C0 0474 Q1E13 Event Q1 Entry 13 Register
0x01C0 0478 Q1E14 Event Q1 Entry 14 Register
0x01C0 047C Q1E15 Event Q1 Entry 15 Register
0x01C0 0480 Q2E0 Event Q2 Entry 0 Register
0x01C0 0484 Q2E1 Event Q2 Entry 1 Register
0x01C0 0488 Q2E2 Event Q2 Entry 2 Register
0x01C0 048C Q2E3 Event Q2 Entry 3 Register
0x01C0 0490 Q2E4 Event Q2 Entry 4 Register
0x01C0 0494 Q2E5 Event Q2 Entry 5 Register
0x01C0 0498 Q2E6 Event Q2 Entry 6 Register
0x01C0 049C Q2E7 Event Q2 Entry 7 Register
0x01C0 04A0 Q2E8 Event Q2 Entry 8 Register
0x01C0 04A4 Q2E9 Event Q2 Entry 9 Register
0x01C0 04A8 Q2E10 Event Q2 Entry 10 Register
Peripheral Information and Electrical Specifications174 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-7. DM6437 EDMA Registers (continued)
HEX ADDRESS ACRONYM REGISTER NAME
0x01C0 04AC Q2E11 Event Q2 Entry 11 Register
0x01C0 04B0 Q2E12 Event Q2 Entry 12 Register
0x01C0 04B4 Q2E13 Event Q2 Entry 13 Register
0x01C0 04B8 Q2E14 Event Q2 Entry 14 Register
0x01C0 04BC Q2E15 Event Q2 Entry 15 Register
0x01C0 04C0 - 0x01C0 05FF Reserved
0x01C0 0600 QSTAT0 Queue 0 Status Register
0x01C0 0604 QSTAT1 Queue 1 Status Register
0x01C0 0608 QSTAT2 Queue 2 Status Register
0x01C0 060C - 0x01C0 061F Reserved
0x01C0 0620 QWMTHRA Queue Watermark Threshold A Register for Q[2:0]
0x01C0 0624 – Reserved
0x01C0 0640 CCSTAT EDMA3CC Status Register
0x01C0 0644 - 0x01C0 0FFF Reserved
Global Channel Registers
0x01C0 1000 ER Event Register
0x01C0 1004 ERH Event Register High
0x01C0 1008 ECR Event Clear Register
0x01C0 100C ECRH Event Clear Register High
0x01C0 1010 ESR Event Set Register
0x01C0 1014 ESRH Event Set Register High
0x01C0 1018 CER Chained Event Register
0x01C0 101C CERH Chained Event Register High
0x01C0 1020 EER Event Enable Register
0x01C0 1024 EERH Event Enable Register High
0x01C0 1028 EECR Event Enable Clear Register
0x01C0 102C EECRH Event Enable Clear Register High
0x01C0 1030 EESR Event Enable Set Register
0x01C0 1034 EESRH Event Enable Set Register High
0x01C0 1038 SER Secondary Event Register
0x01C0 103C SERH Secondary Event Register High
0x01C0 1040 SECR Secondary Event Clear Register
0x01C0 1044 SECRH Secondary Event Clear Register High
0x01C0 1048 - 0x01C0 104F Reserved
0x01C0 1050 IER Interrupt Enable Register
0x01C0 1054 IERH Interrupt Enable Register High
0x01C0 1058 IECR Interrupt Enable Clear Register
0x01C0 105C IECRH Interrupt Enable Clear Register High
0x01C0 1060 IESR Interrupt Enable Set Register
0x01C0 1064 IESRH Interrupt Enable Set Register High
0x01C0 1068 IPR Interrupt Pending Register
0x01C0 106C IPRH Interrupt Pending Register High
0x01C0 1070 ICR Interrupt Clear Register
0x01C0 1074 ICRH Interrupt Clear Register High
0x01C0 1078 IEVAL Interrupt Evaluate Register
0x01C0 1080 QER QDMA Event Register
0x01C0 1084 QEER QDMA Event Enable Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 175
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-7. DM6437 EDMA Registers (continued)
HEX ADDRESS ACRONYM REGISTER NAME
0x01C0 1088 QEECR QDMA Event Enable Clear Register
0x01C0 108C QEESR QDMA Event Enable Set Register
0x01C0 1090 QSER QDMA Secondary Event Register
0x01C0 1094 QSECR QDMA Secondary Event Clear Register
0x01C0 1098 - 0x01C0 1FFF Reserved
Shadow Region 0 Channel Registers
0x01C0 2000 ER Event Register
0x01C0 2004 ERH Event Register High
0x01C0 2008 ECR Event Clear Register
0x01C0 200C ECRH Event Clear Register High
0x01C0 2010 ESR Event Set Register
0x01C0 2014 ESRH Event Set Register High
0x01C0 2018 CER Chained Event Register
0x01C0 201C CERH Chained Event Register High
0x01C0 2020 EER Event Enable Register
0x01C0 2024 EERH Event Enable Register High
0x01C0 2028 EECR Event Enable Clear Register
0x01C0 202C EECRH Event Enable Clear Register High
0x01C0 2030 EESR Event Enable Set Register
0x01C0 2034 EESRH Event Enable Set Register High
0x01C0 2038 SER Secondary Event Register
0x01C0 203C SERH Secondary Event Register High
0x01C0 2040 SECR Secondary Event Clear Register
0x01C0 2044 SECRH Secondary Event Clear Register High
0x01C0 2048 - 0x01C0 204C - Reserved
0x01C0 2050 IER Interrupt Enable Register
0x01C0 2054 IERH Interrupt Enable Register High
0x01C0 2058 IECR Interrupt Enable Clear Register
0x01C0 205C IECRH Interrupt Enable Clear Register High
0x01C0 2060 IESR Interrupt Enable Set Register
0x01C0 2064 IESRH Interrupt Enable Set Register High
0x01C0 2068 IPR Interrupt Pending Register
0x01C0 206C IPRH Interrupt Pending Register High
0x01C0 2070 ICR Interrupt Clear Register
0x01C0 2074 ICRH Interrupt Clear Register High
0x01C0 2078 IEVAL Interrupt Evaluate Register
0x01C0 207C - Reserved
0x01C0 2080 QER QDMA Event Register
0x01C0 2084 QEER QDMA Event Enable Register
0x01C0 2088 QEECR QDMA Event Enable Clear Register
0x01C0 208C QEESR QDMA Event Enable Set Register
0x01C0 2090 QSER QDMA Secondary Event Register
0x01C0 2094 QSECR QDMA Secondary Event Clear Register
0x01C0 2098 - 0x01C0 21FC - Reserved
Shadow Region 1 Channel Registers
0x01C0 2200 ER Event Register
0x01C0 2204 ERH Event Register High
Peripheral Information and Electrical Specifications176 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-7. DM6437 EDMA Registers (continued)
HEX ADDRESS ACRONYM REGISTER NAME
0x01C0 2208 ECR Event Clear Register
0x01C0 220C ECRH Event Clear Register High
0x01C0 2210 ESR Event Set Register
0x01C0 2214 ESRH Event Set Register High
0x01C0 2218 CER Chained Event Register
0x01C0 221C CERH Chained Event Register High
0x01C0 2220 EER Event Enable Register
0x01C0 2224 EERH Event Enable Register High
0x01C0 2228 EECR Event Enable Clear Register
0x01C0 222C EECRH Event Enable Clear Register High
0x01C0 2230 EESR Event Enable Set Register
0x01C0 2234 EESRH Event Enable Set Register High
0x01C0 2238 SER Secondary Event Register
0x01C0 223C SERH Secondary Event Register High
0x01C0 2240 SECR Secondary Event Clear Register
0x01C0 2244 SECRH Secondary Event Clear Register High
0x01C0 2248 - 0x01C0 224C - Reserved
0x01C0 2250 IER Interrupt Enable Register
0x01C0 2254 IERH Interrupt Enable Register High
0x01C0 2258 IECR Interrupt Enable Clear Register
0x01C0 225C IECRH Interrupt Enable Clear Register High
0x01C0 2260 IESR Interrupt Enable Set Register
0x01C0 2264 IESRH Interrupt Enable Set Register High
0x01C0 2268 IPR Interrupt Pending Register
0x01C0 226C IPRH Interrupt Pending Register High
0x01C0 2270 ICR Interrupt Clear Register
0x01C0 2274 ICRH Interrupt Clear Register High
0x01C0 2278 IEVAL Interrupt Evaluate Register
0x01C0 227C - Reserved
0x01C0 2280 QER QDMA Event Register
0x01C0 2284 QEER QDMA Event Enable Register
0x01C0 2288 QEECR QDMA Event Enable Clear Register
0x01C0 228C QEESR QDMA Event Enable Set Register
0x01C0 2290 QSER QDMA Secondary Event Register
0x01C0 2294 QSECR QDMA Secondary Event Clear Register
0x01C0 2298 - 0x01C0 23FC - Reserved
0x01C0 2400 - 0x01C0 25FC - Reserved
0x01C0 2600 - 0x01C0 27FC - Reserved
0x01C0 2800 - 0x01C0 29FC - Reserved
0x01C0 2A00 - 0x01C0 2BFC - Reserved
0x01C0 2C00 - 0x01C0 2DFC - Reserved
0x01C0 2E00 - 0x01C0 2FFC - Reserved
0x01C0 2FFD - 0x01C0 3FFF - Reserved
0x01C0 4000 - 0x01C0 4FFF - Parameter Set RAM (see Table 6-8 )
0x01C0 5000 - 0x01C0 7FFF - Reserved
0x01C0 8000 - 0x01C0 FFFF - Reserved
Transfer Controller 0 Registers
Submit Documentation Feedback Peripheral Information and Electrical Specifications 177
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-7. DM6437 EDMA Registers (continued)
HEX ADDRESS ACRONYM REGISTER NAME
0x01C1 0000 - Reserved
0x01C1 0004 TCCFG EDMA3 TC0 Configuration Register
0x01C1 0008 - 0x01C1 00FF - Reserved
0x01C1 0100 TCSTAT EDMA3 TC0 Channel Status Register
0x01C1 0104 - 0x01C1 0110 - Reserved
0x01C1 0114 - 0x01C1 011F - Reserved
0x01C1 0120 ERRSTAT EDMA3 TC0 Error Status Register
0x01C1 0124 ERREN EDMA3 TC0 Error Enable Register
0x01C1 0128 ERRCLR EDMA3 TC0 Error Clear Register
0x01C1 012C ERRDET EDMA3 TC0 Error Details Register
0x01C1 0130 ERRCMD EDMA3 TC0 Error Interrupt Command Register
0x01C1 0134 - 0x01C1 013F - Reserved
0x01C1 0140 RDRATE EDMA3 TC0 Read Command Rate Register
0x01C1 0144 - 0x01C1 01FF - Reserved
0x01C1 0200 - 0x01C1 023F - Reserved
0x01C1 0240 SAOPT EDMA3 TC0 Source Active Options Register
0x01C1 0244 SASRC EDMA3 TC0 Source Active Source Address Register
0x01C1 0248 SACNT EDMA3 TC0 Source Active Count Register
0x01C1 024C SADST EDMA3 TC0 Source Active Destination Address Register
0x01C1 0250 SABIDX EDMA3 TC0 Active B-Index Register
0x01C1 0254 SAMPPRXY EDMA3 TC0 Source Active Memory Protection Proxy Register
0x01C1 0258 SACNTRLD EDMA3 TC0 Source Active Count Reload Register
0x01C1 025C SASRCBREF EDMA3 TC0 Source Active Source Address B-Reference Register
0x01C1 0260 SADSTBREF EDMA3 TC0 Source Active Destination Address B-Reference Register
0x01C1 0264 - 0x01C1 027F - Reserved
0x01C1 0280 DFCNTRLD EDMA3 TC0 Destination FIFO Set Count Reload Register
0x01C1 0284 DFSRCBREF EDMA3 TC0 Destination FIFO Set Source Address B-Reference Register
EDMA3 TC0 Destination FIFO Set Destination Address B-Reference0x01C1 0288 DFDSTBREF
Register
0x01C1 028C - 0x01C1 02FF - Reserved
0x01C1 0300 DFOPT0 EDMA3 TC0 Destination FIFO Options Register 0
0x01C1 0304 DFSRC0 EDMA3 TC0 Destination FIFO Source Address Register 0
0x01C1 0308 DFCNT0 EDMA3 TC0 Destination FIFO Count Register 0
0x01C1 030C DFDST0 EDMA3 TC0 Destination FIFO Destination Address Register 0
0x01C1 0310 DFBIDX0 EDMA3 TC0 Destination FIFO B-Index Register 0
0x01C1 0314 DFMPPRXY0 EDMA3 TC0 Destination FIFO Memory Protection Proxy Register 0
0x01C1 0318 - 0x01C1 033F - Reserved
0x01C1 0340 DFOPT1 EDMA3 TC0 Destination FIFO Options Register 1
0x01C1 0344 DFSRC1 EDMA3 TC0 Destination FIFO Source Address Register 1
0x01C1 0348 DFCNT1 EDMA3 TC0 Destination FIFO Count Register 1
0x01C1 034C DFDST1 EDMA3 TC0 Destination FIFO Destination Address Register 1
0x01C1 0350 DFBIDX1 EDMA3 TC0 Destination FIFO B-Index Register 1
0x01C1 0354 DFMPPRXY1 EDMA3 TC0 Destination FIFO Memory Protection Proxy Register 1
0x01C1 0358 - 0x01C1 037F - Reserved
0x01C1 0380 DFOPT2 EDMA3 TC0 Destination FIFO Options Register 2
0x01C1 0384 DFSRC2 EDMA3 TC0 Destination FIFO Source Address Register 2
0x01C1 0388 DFCNT2 EDMA3 TC0 Destination FIFO Count Register 2
Peripheral Information and Electrical Specifications178 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-7. DM6437 EDMA Registers (continued)
HEX ADDRESS ACRONYM REGISTER NAME
0x01C1 038C DFDST2 EDMA3 TC0 Destination FIFO Destination Address Register 2
0x01C1 0390 DFBIDX2 EDMA3 TC0 Destination FIFO B-Index Register 2
0x01C1 0394 DFMPPRXY2 EDMA3 TC0 Destination FIFO Memory Protection Proxy Register 2
0x01C1 0398 - 0x01C1 03BF - Reserved
0x01C1 03C0 DFOPT3 EDMA3 TC0 Destination FIFO Options Register 3
0x01C1 03C4 DFSRC3 EDMA3 TC0 Destination FIFO Source Address Register 3
0x01C1 03C8 DFCNT3 EDMA3 TC0 Destination FIFO Count Register 3
0x01C1 03CC DFDST3 EDMA3 TC0 Destination FIFO Destination Address Register 3
0x01C1 03D0 DFBIDX3 EDMA3 TC0 Destination FIFO B-Index Register 3
0x01C1 03D4 DFMPPRXY3 EDMA3 TC0 Destination FIFO Memory Protection Proxy Register 3
0x01C1 03D8 - 0x01C1 03FF - Reserved
Transfer Controller 1 Registers
0x01C1 0400 - Reserved
0x01C1 0404 TCCFG EDMA3 TC1 Configuration Register
0x01C1 0408 - 0x01C1 04FF - Reserved
0x01C1 0500 TCSTAT EDMA3 TC1 Channel Status Register
0x01C1 0504 - 0x01C1 0510 - Reserved
0x01C1 0514 - 0x01C1 051F - Reserved
0x01C1 0520 ERRSTAT EDMA3 TC1 Error Status Register
0x01C1 0524 ERREN EDMA3 TC1 Error Enable Register
0x01C1 0528 ERRCLR EDMA3 TC1 Error Clear Register
0x01C1 052C ERRDET EDMA3 TC1 Error Details Register
0x01C1 0530 ERRCMD EDMA3 TC1 Error Interrupt Command Register
0x01C1 0534 - 0x01C1 053F - Reserved
0x01C1 0540 RDRATE EDMA3 TC1 Read Command Rate Register
0x01C1 0544 - 0x01C1 05FF - Reserved
0x01C1 0600 - 0x01C1 063F - Reserved
0x01C1 0640 SAOPT EDMA3 TC1 Source Active Options Register
0x01C1 0644 SASRC EDMA3 TC1 Source Active Source Address Register
0x01C1 0648 SACNT EDMA3 TC1 Source Active Count Register
0x01C1 064C SADST EDMA3 TC1 Source Active Destination Address Register
0x01C1 0650 SABIDX EDMA3 TC1 Active B-Index Register
0x01C1 0654 SAMPPRXY EDMA3 TC1 Source Active Memory Protection Proxy Register
0x01C1 0658 SACNTRLD EDMA3 TC1 Source Active Count Reload Register
0x01C1 065C SASRCBREF EDMA3 TC1 Source Active Source Address B-Reference Register
0x01C1 0660 SADSTBREF EDMA3 TC1 Source Active Destination Address B-Reference Register
0x01C1 0664 - 0x01C1 067F - Reserved
0x01C1 0680 DFCNTRLD EDMA3 TC1 Destination FIFO Set Count Reload Register
0x01C1 0684 DFSRCBREF EDMA3 TC1 Destination FIFO Set Source Address B-Reference Register
EDMA3 TC1 Destination FIFO Set Destination Address B-Reference0x01C1 0688 DFDSTBREF
Register
0x01C1 068C - 0x01C1 06FF - Reserved
0x01C1 0700 DFOPT0 EDMA3 TC1 Destination FIFO Options Register 0
0x01C1 0704 DFSRC0 EDMA3 TC1 Destination FIFO Source Address Register 0
0x01C1 0708 DFCNT0 EDMA3 TC1 Destination FIFO Count Register 0
0x01C1 070C DFDST0 EDMA3 TC1 Destination FIFO Destination Address Register 0
0x01C1 0710 DFBIDX0 EDMA3 TC1 Destination FIFO B-Index Register 0
Submit Documentation Feedback Peripheral Information and Electrical Specifications 179
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-7. DM6437 EDMA Registers (continued)
HEX ADDRESS ACRONYM REGISTER NAME
0x01C1 0714 DFMPPRXY0 EDMA3 TC1 Destination FIFO Memory Protection Proxy Register 0
0x01C1 0718 - 0x01C1 073F - Reserved
0x01C1 0740 DFOPT1 EDMA3 TC1 Destination FIFO Options Register 1
0x01C1 0744 DFSRC1 EDMA3 TC1 Destination FIFO Source Address Register 1
0x01C1 0748 DFCNT1 EDMA3 TC1 Destination FIFO Count Register 1
0x01C1 074C DFDST1 EDMA3 TC1 Destination FIFO Destination Address Register 1
0x01C1 0750 DFBIDX1 EDMA3 TC1 Destination FIFO B-Index Register 1
0x01C1 0754 DFMPPRXY1 EDMA3 TC1 Destination FIFO Memory Protection Proxy Register 1
0x01C1 0758 - 0x01C1 077F - Reserved
0x01C1 0780 DFOPT2 EDMA3 TC1 Destination FIFO Options Register 2
0x01C1 0784 DFSRC2 EDMA3 TC1 Destination FIFO Source Address Register 2
0x01C1 0788 DFCNT2 EDMA3 TC1 Destination FIFO Count Register 2
0x01C1 078C DFDST2 EDMA3 TC1 Destination FIFO Destination Address Register 2
0x01C1 0790 DFBIDX2 EDMA3 TC1 Destination FIFO B-Index Register 2
0x01C1 0794 DFMPPRXY2 EDMA3 TC1 Destination FIFO Memory Protection Proxy Register 2
0x01C1 0798 - 0x01C1 07BF - Reserved
0x01C1 07C0 DFOPT3 EDMA3 TC1 Destination FIFO Options Register 3
0x01C1 07C4 DFSRC3 EDMA3 TC1 Destination FIFO Source Address Register 3
0x01C1 07C8 DFCNT3 EDMA3 TC1 Destination FIFO Count Register 3
0x01C1 07CC DFDST3 EDMA3 TC1 Destination FIFO Destination Address Register 3
0x01C1 07D0 DFBIDX3 EDMA3 TC1 Destination FIFO B-Index Register 3
0x01C1 07D4 DFMPPRXY3 EDMA3 TC1 Destination FIFO Memory Protection Proxy Register 3
0x01C1 07D8 - 0x01C1 07FF - Reserved
Transfer Controller 2 Registers
0x01C1 0800 - Reserved
0x01C1 0804 TCCFG EDMA3 TC2 Configuration Register
0x01C1 0808 - 0x01C1 08FF - Reserved
0x01C1 0900 TCSTAT EDMA3 TC2 Channel Status Register
0x01C1 0904 - 0x01C1 0910 - Reserved
0x01C1 0914 - 0x01C1 091F - Reserved
0x01C1 0920 ERRSTAT EDMA3 TC2 Error Status Register
0x01C1 0924 ERREN EDMA3 TC2 Error Enable Register
0x01C1 0928 ERRCLR EDMA3 TC2 Error Clear Register
0x01C1 092C ERRDET EDMA3 TC2 Error Details Register
0x01C1 0930 ERRCMD EDMA3 TC2 Error Interrupt Command Register
0x01C1 0934 - 0x01C1 093F - Reserved
0x01C1 0940 RDRATE EDMA3 TC2 Read Command Rate Register
0x01C1 0944 - 0x01C1 09FF - Reserved
0x01C1 0A00 - 0x01C1 0A3F - Reserved
0x01C1 0A40 SAOPT EDMA3 TC2 Source Active Options Register
0x01C1 0A44 SASRC EDMA3 TC2 Source Active Source Address Register
0x01C1 0A48 SACNT EDMA3 TC2 Source Active Count Register
0x01C1 0A4C SADST EDMA3 TC2 Source Active Destination Address Register
0x01C1 0A50 SABIDX EDMA3 TC2 Active B-Index Register
0x01C1 0A54 SAMPPRXY EDMA3 TC2 Source Active Memory Protection Proxy Register
0x01C1 0A58 SACNTRLD EDMA3 TC2 Source Active Count Reload Register
0x01C1 0A5C SASRCBREF EDMA3 TC2 Source Active Source Address B-Reference Register
Peripheral Information and Electrical Specifications180 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-7. DM6437 EDMA Registers (continued)
HEX ADDRESS ACRONYM REGISTER NAME
0x01C1 0A60 SADSTBREF EDMA3 TC2 Source Active Destination Address B-Reference Register
0x01C1 0A64 - 0x01C1 0A7F - Reserved
0x01C1 0A80 DFCNTRLD EDMA3 TC2 Destination FIFO Set Count Reload Register
0x01C1 0A84 DFSRCBREF EDMA3 TC2 Destination FIFO Set Source Address B-Reference Register
EDMA3 TC2 Destination FIFO Set Destination Address B-Reference0x01C1 0A88 DFDSTBREF
Register
0x01C1 0A8C - 0x01C1 0AFF - Reserved
0x01C1 0B00 DFOPT0 EDMA3 TC2 Destination FIFO Options Register 0
0x01C1 0B04 DFSRC0 EDMA3 TC2 Destination FIFO Source Address Register 0
0x01C1 0B08 DFCNT0 EDMA3 TC2 Destination FIFO Count Register 0
0x01C1 0B0C DFDST0 EDMA3 TC2 Destination FIFO Destination Address Register 0
0x01C1 0B10 DFBIDX0 EDMA3 TC2 Destination FIFO B-Index Register 0
0x01C1 0B14 DFMPPRXY0 EDMA3 TC2 Destination FIFO Memory Protection Proxy Register 0
0x01C1 0B18 - 0x01C1 0B3F - Reserved
0x01C1 0B40 DFOPT1 EDMA3 TC2 Destination FIFO Options Register 1
0x01C1 0B44 DFSRC1 EDMA3 TC2 Destination FIFO Source Address Register 1
0x01C1 0B48 DFCNT1 EDMA3 TC2 Destination FIFO Count Register 1
0x01C1 0B4C DFDST1 EDMA3 TC2 Destination FIFO Destination Address Register 1
0x01C1 0B50 DFBIDX1 EDMA3 TC2 Destination FIFO B-Index Register 1
0x01C1 0B54 DFMPPRXY1 EDMA3 TC2 Destination FIFO Memory Protection Proxy Register 1
0x01C1 0B58 - 0x01C1 0B7F - Reserved
0x01C1 0B80 DFOPT2 EDMA3 TC2 Destination FIFO Options Register 2
0x01C1 0B84 DFSRC2 EDMA3 TC2 Destination FIFO Source Address Register 2
0x01C1 0B88 DFCNT2 EDMA3 TC2 Destination FIFO Count Register 2
0x01C1 0B8C DFDST2 EDMA3 TC2 Destination FIFO Destination Address Register 2
0x01C1 0B90 DFBIDX2 EDMA3 TC2 Destination FIFO B-Index Register 2
0x01C1 0B94 DFMPPRXY2 EDMA3 TC2 Destination FIFO Memory Protection Proxy Register 2
0x01C1 0B98 - 0x01C1 0BBF - Reserved
0x01C1 0BC0 DFOPT3 EDMA3 TC2 Destination FIFO Options Register 3
0x01C1 0BC4 DFSRC3 EDMA3 TC2 Destination FIFO Source Address Register 3
0x01C1 0BC8 DFCNT3 EDMA3 TC2 Destination FIFO Count Register 3
0x01C1 0BCC DFDST3 EDMA3 TC2 Destination FIFO Destination Address Register 3
0x01C1 0BD0 DFBIDX3 EDMA3 TC2 Destination FIFO B-Index Register 3
0x01C1 0BD4 DFMPPRXY3 EDMA3 TC2 Destination FIFO Memory Protection Proxy Register 3
0x01C1 0BD8 - 0x01C1 0BFF - Reserved
Table 6-8 shows an abbreviation of the set of registers which make up the parameter set for each of 128EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-9 shows theparameter set entry registers with relative memory address locations within each of the parameter sets.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 181
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-8. EDMA Parameter Set RAM
HEX ADDRESS RANGE DESCRIPTION
0x01C0 4000 - 0x01C0 401F Parameters Set 0 (8 32-bit words)
0x01C0 4020 - 0x01C0 403F Parameters Set 1 (8 32-bit words)
0x01C0 4040 - 0x01C0 405F Parameters Set 2 (8 32-bit words)
0x01C0 4060 - 0x01C0 407F Parameters Set 3 (8 32-bit words)
0x01C0 4080 - 0x01C0 409F Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF Parameters Set 5 (8 32-bit words)
... ...
0x01C0 4FC0 - 0x01C0 4FDF Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF Parameters Set 127 (8 32-bit words)
Table 6-9. Parameter Set Entries
HEX OFFSET ADDRESS
ACRONYM PARAMETER ENTRYWITHIN THE PARAMETER SET
0x0000 OPT Option
0x0004 SRC Source Address
0x0008 A_B_CNT A Count, B Count
0x000C DST Destination Address
0x0010 SRC_DST_BIDX Source B Index, Destination B Index
0x0014 LINK_BCNTRLD Link Address, B Count Reload
0x0018 SRC_DST_CIDX Source C Index, Destination C Index
0x001C CCNT C Count
Peripheral Information and Electrical Specifications182 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.5 Reset
6.5.1 Power-on Reset ( POR Pin)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The reset controller detects the different type of resets supported on the DM6437 device and manages thedistribution of those resets throughout the device.
The DM6437 device has several types of device-level global resets - power-on reset, warm reset, andmax reset. Table 6-10 explains further the types of reset, the reset initiator, and the effects of each reseton the chip. See Section 6.5.9 ,Reset Electrical Data/Timing, for more information on the effects of eachreset on the PLL controllers and their clocks.
Table 6-10. Device-Level Global Reset Types
TYPE INITIATOR EFFECT(s)
POR pin Global chip reset (Cold reset). Activates the POR signal on chip,which resets the entire chip including the emulation logic.Power-on Reset
The power-on reset ( POR) pin must be driven low during power(POR)
ramp of the device.Device boot and configuration pin are latched.
Resets everything except for the emulation logic. Emulator staysWarm Reset RESET pin alive during Warm Reset.Device boot and configuration pin are latched.
Same as a Warm Reset, except the DM6437 device boot andMax Reset Emulator, WD Timer (Timer 2)
configuration pins are not re-latched.
In addition to device-level global resets, the PSC provides the capability to cause local resets toperipherals and/or the CPU.
Power-on Reset (POR) is initiated by the POR pin and is used to reset the entire chip, including theemulation logic. Power-on Reset is also referred to as a cold reset since the device usually goes through apower-up cycle. During power-up, the POR pin must be asserted (driven low) until the power supplieshave reached their normal operating conditions. If an external 27-MHz oscillator is used on the MXI/CLKINpin, the source clock should also be running at the correct frequency prior to de-asserting the POR pin.Note: A device power-up cycle is not required to initiate a Power-on Reset.
The following sequence must be followed during a Power-on Reset.
1. Wait for the power supplies to reach normal operating conditions while keeping the POR pin asserted(driven low).
2. Wait for the input clock source to be stable while keeping the POR pin asserted (low).
3. Once the power supplies and the input clock source are stable, the POR pin must remain asserted(low) for a minimum of 12 MXI cycles.
Within the low period of the POR pin, the following happens: The reset signals flow to the entire chip (including the emulation logic), resetting the modules onchip.
The PLL Controller clocks start at the frequency of the MXI clock. The clocks are propagatedthroughout the chip to reset the chip synchronously. By default, both PLL1 and PLL2 are in resetand unlocked. The PLL Controllers default to PLL Bypass Mode. The RESETOUT pin stays asserted (low), indicating the device is in reset.
4. The POR pin may now be deasserted (driven high).
When the POR pin is deasserted (high), the configuration pin values are latched and the PLLControllers changed their system clocks to their default divide-down values. Both PLL Controllers arestill in PLL Bypass Mode. Other device initialization also begins.
5. After device initialization is complete, the PLL Controllers pause the system clocks for 10 cycles. At theend of these 10 cycles, the RESETOUT pin is deasserted (driven high).
At this point:
Submit Documentation Feedback Peripheral Information and Electrical Specifications 183
l TEXAS INSTRUMENTS SPRAAGO
6.5.1.1 Usage of POR versus RESET Pins
6.5.1.2 Latching Boot and Configuration Pins
6.5.2 Warm Reset ( RESET Pin)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The I/O pins are controlled by the default peripherals (default peripherals are determined byPINMUX0 and PINMUX1 registers). The clock and reset of each peripheral is determined by the default settings of the Power and SleepController (PSC). The PLL Controllers are operating in PLL Bypass Mode.– The C64x+ begins executing from DSPBOOTADDR (determined by bootmode selection).
After the reset sequence, the boot sequence begins. For more details on the boot sequence, see theUsing the TMS320DM643x Bootloader Application Report (literature number SPRAAG0 ).
After the boot sequence, follow the software initialization sequence described in Section 3.8 ,DeviceInitialization Sequence After Reset.
POR and RESET are independent resets.
If the device needs to go through a power-up cycle, POR ( not RESET) must be used to fully reset thedevice.
In functional end-system, emulation/debugger logic is typically not needed; therefore, the recommendationfor functional end-system is to use the POR pin for full device reset. If RESET pin is not needed, it can bepulled inactive (high) via an external pullup resistor.
In a debug system, it is typically desirable to allow the reset of the device without crashing an emulationsession. In this case, the user can use the POR pin to achieve full device reset and use the RESET pin toachieve a debug reset—which resets the entire device except emulation logic.
Internal to the chip, the two device reset pins RESET and POR are logically AND’d together only for thepurpose of latching device boot and configuration pins. The values on all device and boot configurationpins are latched into the BOOTCFG register when the logical AND of RESET and POR transitions fromlow-to-high.
A Warm Reset is activated by driving the RESET pin active low. This resets everything in the deviceexcept the emulation logic. An emulator session will stay alive during warm reset.
For more information on POR vs. RESET usage, see Section 6.5.1.1 ,Usage of POR versus RESET Pinsand Section 6.5.1.2 ,Latching Boot and Configuration Pins.
The following sequence must be followed during a Warm Reset:
1. Power supplies and input clock source should already be stable.
2. The RESET pin must be asserted (low) for a minimum of 12 MXI cycles.
Within the low period of the RESET pin, the following happens: The reset signals flow to the entire chip resetting all the modules on chip, except the emulationlogic.
The PLL Controllers are reset thereby, switching back to PLL Bypass Mode and resetting all theirregisters to default values. Both PLL1 and PLL2 are placed in reset and lose lock. The RESETOUT pin becomes asserted (low), indicating the device is in reset.
3. The RESET pin may now be deasserted (driven high).
When the RESET pin is deasserted (high), the configuration pin values are latched and the PLLControllers changed their system clocks to their default divide-down values. Both PLL Controllers arestill in PLL Bypass Mode. Other device initialization also begins.
4. After device initialization is complete, the PLL Controllers pause the system clocks for 10 cycles. At theend of these 10 cycles, the RESETOUT pin is deasserted (driven high).
Peripheral Information and Electrical Specifications184 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRAAGO SPRAAGO
6.5.3 Maximum Reset
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
At this point: The I/O pins are controlled by the default peripherals (default peripherals are determined byPINMUX0 and PINMUX1 registers). The clock and reset of each peripheral is determined by the default settings of the Power and SleepController (PSC). The PLL Controllers are operating in PLL Bypass Mode.– The C64x+ begins executing from DSPBOOTADDR (determined by bootmode selection).
After the reset sequence, the boot sequence begins. For more details on the boot sequence, see theUsing the TMS320DM643x Bootloader Application Report (literature number SPRAAG0 )).
After the boot sequence, follow the software initialization sequence described in Section 3.8 ,DeviceInitialization Sequence After Reset.
A Maximum (Max) Reset is initiated by the emulator or the watchdog timer (Timer 2). The effects are thesame as a warm reset, except the device boot and configuration pins are not re-latched. The emulatorinitiates a maximum reset via the ICEPICK module. This ICEPICK initiated reset is non-maskable. Whenthe watchdog timer counter reaches zero, this will also initiate a maximum reset to recover from a runawaycondition. The watchdog timeout reset condition is masked if the TIMERCTL.WDRST bit is cleared to "0".
To invoke the maximum reset via the ICEPICK module, the user can perform the following from the CodeComposer Studio™ IDE menu: Debug Advanced Resets System Reset
This is the Max Reset sequence:
1. Max Reset is initiated by the emulator or the watchdog timer.
During this time, the following happens: The reset signals flow to the entire chip resetting all the modules on chip except the emulationlogic.
The PLL Controllers are reset thereby, switching back to PLL Bypass Mode and resetting all theirregisters to default values. Both PLL1 and PLL2 are placed in reset and lose lock. The RESETOUT pin becomes asserted (low), indicating the device is in reset.
2. After device initialization is complete, the PLL Controllers pause the system clocks for 10 cycles. At theend of these 10 cycles, the RESETOUT pin is deasserted (driven high).
At this point: The I/O pins are controlled by the default peripherals (default peripherals are determined byPINMUX0 and PINMUX1 registers). The clock and reset of each peripheral is determined by the default settings of the Power and SleepController (PSC). The PLL Controllers are operating in PLL Bypass Mode.– The C64x+ begins executing from DSPBOOTADDR (determined by bootmode selection).
After the reset sequence, the boot sequence begins. Since the boot and configuration pins are not latchedwith a Max Reset, the previous values (as shown in the BOOTCFG register) are used to select the bootmode. For more details on the boot sequence, see the Using the TMS320DM643x Bootloader ApplicationReport (literature number SPRAAG0 ).
After the boot sequence, follow the software initialization sequence described in Section 3.8 ,DeviceInitialization Sequence After Reset.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 185
l TEXAS INSTRUMENTS SPRU978 SPRU978 SPRU978
6.5.4 CPU Local Reset
6.5.5 Peripheral Local Reset
6.5.6 Reset Priority
6.5.7 Reset Controller Register
6.5.8 Pin Behaviors at Reset
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The C64x+ DSP CPU has an internal reset input that allows a host (PCI/HPI) to control it. This reset isconfigured through a register bit (MDCTL[39]. LRST) in the Power Sleep Controller (PSC) module. When inC64x+ local reset, the slave DMA port on C64x+ will remain active and the internal memory will beaccessible. For procedures on asserting and de-asserting CPU local reset by the host, see theTMS320DM643x DMP DSP Subsystem Reference Guide (literature number SPRU978 ).
For information on peripheral selection at the rising edge of POR or RESET, see Section 3 ,DeviceConfigurations of this data manual.
The user can configure the local reset and clock state of a peripheral through programming the PSC.Table 6-4 , DM6437 LPSC Assignments identifies the LPSC numbers and the peripherals capable of beinglocally reset by the PSC. For more detailed information on the programming of these peripherals by thePSC, see the TMS320DM643x DMP DSP Subsystem Reference Guide (literature number SPRU978 ).
If any of the above reset sources occur simultaneously, the PLLC only processes the highest priority resetrequest. The reset request priorities are as follows (high to low):Power-on ResetMaximum ResetWarm ResetCPU Reset
The Reset Type Status (RSTYPE) register (01C4 00E4) is the only register for the reset controller. Thisregister falls in the same memory range as the PLL1 controller registers (see Table 6-18 for the PLL1Controller Registers (including Reset Controller)). For more details on the RSTYPE register, see theTMS320DM643x DMP DSP Subsystem Reference Guide (literature number SPRU978 ).
During normal operations, pins are controlled by the respective peripheral selected in the PINMUX0 orPINMUX1 register. During device level global reset, the pin behaves as follows:
Multiplexed Boot and Configuration Pins
These pins are forced 3-stated when RESETOUT is asserted (low). This is to ensure the proper boot andconfiguration values can be latched on these multiplexed pins. This is particularly useful in the case wherethe boot and configuration values are driven by an external control device. After RESETOUT isdeasserted (high), these pins are controlled by their respective default peripheral.Boot and Configuration Pins Group: YOUT6/GP[28], YOUT5/GP[27], YOUT4/GP[26]/(FASTBOOT),YOUT3/GP[25]/(BOOTMODE3), YOUT2/GP[24]/(BOOTMODE2), YOUT1/GP[23]/(BOOTMODE1),YOUT0/GP[22]/(BOOTMODE0), R0/EM_A[4]/GP[10]/(AEAW2/PLLMS2),
G1/EM_A[1]/(ALE)/GP[9]/(AEAW1/PLLMS1), B1/EM_A[2]/(CLE)/GP[8]/(AEAW0/PLLMS0),R1/EM_A[0]/GP[7]/(AEM2), R2/EM_BA[0]/GP[6]/(AEM1), and B2/EM_BA[1]/GP[5]/(AEM0).
For information on whether external pullup/pulldown resistors should be used on the boot andconfiguration pins, see Section 3.9.1 ,Pullup/Pulldown Resistors.
186 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Default Power Down Pins
As discussed in Section 3.2 ,Power Considerations, the VDD3P3V_PWDN register controls power to the3.3-V pins. The VDD3P3V_PWDN register defaults to powering down some 3.3-V pins to save power. Formore details on the VDD3P3V_PWDN register and which 3.3-V pins default to powerup or powerdown,Section 3.2 ,Power Considerations. The pins that default to powerdown, are both reset to powerdown andhigh-impedance. They remain in that state until configured otherwise by VDD3P3_PWDN andPINMUX0/PINMUX1 programming.Default Power Down Pin Group: GP[4]/PWM1, ACLKR0/CLKX0/GP[99], AFSR0/DR0/GP[100],AHCLKR0/CLKR0/GP[101], AXR0[3]/FSR0/GP[102], AXR0[2]/FSX0/GP[103], AXR0[1]/DX0/GP[104],AXR0/FSR1/GP[105], ACLKX0/CLKX1/GP[106], AFSX0/DX1/GP[107], AHCLKX0/CLKR1/GP[108],AMUTEIN0/FSX1/GP[109], AMUTE0/DR1/GP[110], HECC_TX/TOUT1L/UTXD1/GP[55],HECC_RX/TINP1L/URXD1/GP[56], CLKS0/TOUT0L/GP[97], CLKS1/TINP0L/GP[98], URXD0/GP[85],UTXD0/GP[86], UCTS0/GP[87], and URTS0/PWM0/GP[88].
All Other Pins
During RESETOUT assertion (low), all other pins are controlled by the default peripheral. The defaultperipheral is determined by the default settings of the PINMUX0 or PINMUX1 registers.
Some of the PINMUX0/PINMUX1 settings are determined by configuration pins latched at reset. Todetermine the reset behavior of these pins, see Section 3.7 ,Multiplexed Pin Configurations and read therest of the this subsection to understand how that default peripheral controls the pin.
The reset behaviors for all these other pins are categorized as follows (also see Figure 6-7 and Figure 6-8in Section 6.5.9 ,Reset Electrical Data/Timing):Z+/Low Group (Z Longer-to-Low Group): These pins are 3-stated when device-level global resetsource (e.g., POR, RESET, or Max Reset) is asserted. These pins remain 3-stated throughoutRESETOUT assertion. When RESETOUT is deasserted, these pins drive a logic low.Z+/High Group (Z Longer-to-High Group): These pins are 3-stated when device-level global resetsource (e.g., POR, RESET, or Max Reset) is asserted. These pins remain 3-stated throughoutRESETOUT assertion. When RESETOUT is deasserted, these pins drive a logic high.Z+/Invalid Group (Z Longer-to-Invalid Group): These pins are 3-stated when device-level globalreset source (e.g., POR, RESET, or Max Reset) is asserted. These pins remain 3-stated throughoutRESETOUT assertion. When RESETOUT is deasserted, these pins drive an invalid value untilconfigured otherwise by their respective peripheral (after the peripheral is enabled by the PSC).Z Group: These pins are 3-stated by default, and these pins remain 3-stated throughout RESETOUTassertion. When RESETOUT is deasserted, these pins remain 3-stated until configured otherwise bytheir respective peripheral (after the peripheral is enabled by the PSC).Low Group: These pins are low by default, and remain low until configured otherwise by theirrespective peripheral (after the peripheral is enabled by the PSC).High Group: These pins are high by default, and remain high until configured otherwise by theirrespective peripheral (after the peripheral is enabled by the PSC).Z/Low Group (Z-to-Low Group): These pins are 3-stated when device-level global reset source (e.g.,POR, RESET, or Max Reset) is asserted. When the reset source is deasserted, these pins drive alogic low.Z/High Group (Z-to-High Group): These pins are 3-stated when device-level global reset source(e.g., POR, RESET, or Max Reset) is asserted. When reset source is deasserted, these pins drive alogic high.Clock Group: These clock pins are toggling by default. They paused momentarily before RESETOUTis deasserted (high). The only pin in the Clock Group is CLKOUT0.
This is a list of possible default peripherals and how they control the pins during reset:GPIO: All GPIO pins behave according to Z Group.
Note: The following EMIFA list only includes pins that can default to function as EMIFA signals.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 187
l TEXAS INSTRUMENTS
6.5.9 Reset Electrical Data/Timing
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
EMIFA: These EMIFA signals are multiplexed with boot and configuration pins: EM_A[4], EM_A[2:0],EM_BA[0], EM_BA[1]; therefore, they are forced 3-stated throughout RESETOUT.
Z+/Low Group: EM_A[4], EM_A[2:0]
Z+/High Group: EM_BA[0], EM_BA[1], EM_OE, EM_WE
Z+/Invalid Group: EM_D[7:0]
Z/Low Group: EM_A[21:5], EM_A[3], EM_R/ W
Z/High Group: EM_CS2
Z Group: EM_WAIT/(RDY/ BSY)DDR2 Memory Controller:
Clock Group: DDR_CLK, DDR_CLK
DDR2 Z Group: DDR_DQM[3:0], DDR_DQS[3:0], DDR_D[31:0]
DDR2 Low Group: DDR_CKE, DDR_BA[2:0], DDR_A[12:0]
DDR2 High Group: DDR_CS, DDR_WE, DDR_RAS, DDR_CASPCI: All PCI pins behave according to Z Group.I2C: All I2C pins behave according to Z Group.JTAG: TDO, EMU0, and EMU1 pins behave according to Z Group. TCK, TDI, TMS, and TRST areinput-only pins.Clock: CLKOUT0
For more information on the pin behaviors during device-level global reset, see Figure 6-7 and Figure 6-8in Section 6.5.9 ,Reset Electrical Data/Timing.
Note: If a configuration pin must be routed out from the device, the internal pullup/pulldown (IPU/IPD)resistor should not be relied upon; TI recommends the use of an external pullup/pulldown resistor.
Table 6-11. Timing Requirements for Reset (see Figure 6-7 and Figure 6-8 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
w(RESET)
Pulse duration, POR low or RESET low 12C
(1)
ns
Setup time, boot and configuration pins valid before POR high or RESET4 t
su(CONFIG)
12C
(1)
nshigh
(2)
Hold time, boot and configuration pins valid after POR high or RESET5 t
h(CONFIG)
0 nshigh
(2)
(1) C = 1/MXI clock frequency in ns. The device clock source must be stable and at a valid frequency prior to meeting the t
w(RESET)requirement.
(2) For the list of boot and configuration pins, see Table 2-5 ,Boot Terminal Functions.
Table 6-12. Switching Characteristics Over Recommended Operating Conditions During Reset
(1)
(see Figure 6-8 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
2 t
d(RSTH-RSTOUTH)
Delay time, POR high or RESET high to RESETOUT high 1900C ns
3 t
w(PAUSE)
Pulse duration, SYSCLKs paused (low) before RESETOUT high 10C 10C ns
6 t
d(RSTL-IV)
Delay time, POR low or RESET low to pins invalid 20 ns
7 t
d(RSTH-V)
Delay time, POR high or RESET high to pins valid 20 ns
8 t
d(RSTOUTH-V)
Delay time, RESETOUT high to pins valid 0 ns
9 t
d(RSTOUTH-IV)
Delay time, RESETOUT high to pins invalid 12C ns
(1) C = 1/CLKIN1 clock frequency in ns.
Peripheral Information and Electrical Specifications188 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 6-7 shows the Power-Up Timing. Figure 6-8 shows the Warm Reset ( RESET) Timing. Max ResetTiming is identical to Warm Reset Timing, except the boot and configuration pins are not relatched andthe BOOTCFG register retains its previous value latched before the Max Reset was initiated.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 189
i TEXAS INSTRUMENTS
MXI(A)
POR
RESET
RESETOUT
SYSCLKREFCLK
(PLLC1)
SYSCLK1
SYSCLK2
SYSCLK3
CLKOUT0
Bootand
ConfigurationPins Config
Z+/LowGroup
(Zlonger-to-low)
Z+/HighGroup
(Zlonger-to-low)
ZGroup
Power
Supplies
Ramping
PowerSuppliesStable
Hi-Z
Hi-Z
Hi-Z
ClockSourceStable
1
45
2
3
8
8
8
DDR2ZGroup
DDR2LowGroup
DDR2HighGroup
DrivenorHi-Z
Z/HighGroup
(Z-to-high)
Z/LowGroup
(Z-to-low)
7
7
7
7
7
Z+/InvalidGroup
(Zlonger-to-Invalid)
Hi-Z 9
Invalid
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
A. Power supplies and MXI must be stable before the start of t
W(RESET).
.
B. Pin reset behavior depends on which peripheral defaults to controlling the multiplexed pin. For more details on whatpin group (e.g., Z Group, Z/Low Group, Z/High Group, etc.) each pin belongs to, see Section 6.5.8 ,Pin Behaviors atReset.
Figure 6-7. Power-Up Timing
(B)
Peripheral Information and Electrical Specifications190 Submit Documentation Feedback
l TEXAS INSTRUMENTS
MXI
POR
RESET
RESETOUT
SYSCLKREFCLK
(PLLC1)
SYSCLK1
SYSCLK2
SYSCLK3
CLKOUT0
Bootand
ConfigurationPins Config
PowerSuppliesStable
1
45
2
3
PLL1Clock
Div1Clock
Div3Clock
Div6Clock
DrivenorHi-Z
8
6
DrivenorHi-Z
Z+/LowGroup
(Zlonger-to-low)
Z+/HighGroup
(Zlonger-to-high)
ZGroup
8
DDR2ZGroup
DDR2LowGroup
DDR2HighGroup
Z/HighGroup
(Z-to-high)
7
Z/LowGroup
(Z-to-low)
7
DrivenorHi-Z
DrivenorHi-Z
DrivenorHi-Z
6
6
6
6
6
8
Z+/InvalidGroup
(Zlonger-to-invalid)
9
Invalid
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
A. Pin reset behavior depends on which peripheral defaults to controlling the multiplexed pin. For more details on whatpin group (e.g., Z Group, Z/Low Group, Z/High Group, etc.) each pin belongs to, see Section 6.5.8 ,Pin Behaviors atReset.
Figure 6-8. Warm Reset ( RESET) Timing
(A)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 191
l TEXAS INSTRUMENTS
6.6 External Clock Input From MXI/CLKIN Pin
6.6.1 Clock Input Option 1—Crystal
MXI/CLKIN MXO
C1 C2
Crystal
27MHz
MXVSS
1.8V
MXVDD
CL+C1C2
(C1)C2)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The DM6437 device includes two options to provide an external clock input:Use an on-chip oscillator with external crystal.Use an external 1.8-V LVCMOS-compatible clock input.
The optimal external clock input frequency is 27 MHz. Section 6.6.1 provides more details on Option 1,using an on-chip oscillator with external crystal. Section 6.6.2 provides details on Option 2, using anexternal 1.8-V LVCMOS-compatible clock input.
In this option, a crystal is used as the external clock input to the DM6437.
The 27-MHz oscillator provides the reference clock for all DM6437 subsystems and peripherals. Theon-chip oscillator requires an external 27-MHz crystal connected across the MXI and MXO pins, alongwith two load capacitors, as shown in Figure 6-9 . The external crystal load capacitors must be connectedonly to the 27-MHz oscillator ground pin (MXV
SS
). Do not connect to board ground (V
SS
). The MXV
DD
pincan be connected to the same 1.8 V power supply as DV
DDR2
.
Figure 6-9. 27-MHz System Oscillator
The load capacitors, C1 and C2, should be chosen such that the equation is satisfied (typical values areC1 = C2 = 10 pF). C
L
in the equation is the load specified by the crystal manufacturer. All discretecomponents used to implement the oscillator circuit should be placed as close as possible to theassociated oscillator pins (MXI and MXO) and to the MXV
SS
pin.
Table 6-13. Input Requirements for Crystal
PARAMETER MIN TYP MAX UNIT
Start-up time (from power up until oscillating at stable frequency of 27
4 msMHz)
Oscillaton frequency 27 MHz
ESR 60
Frequency Stability
(1)
±50 ppm
(1) Applies only when using the VPBE for NTSC or PAL compliant video. For video and audio applications, stability of the input clock is veryimportant. The user should select crystals with low enough ppm to ensure good video and audio quality for the specific application. If theVPBE is used for NTSC or PAL compliant video output, TI recommends a 27-MHz, 50-ppm crystal. For more details on this NTSC andPAL compliant output video, see Section 6.10.2 ,Video Processing Back-End (VPBE).
Peripheral Information and Electrical Specifications192 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.6.2 Clock Input Option 2—1.8-V LVCMOS-Compatible Clock Input
MXI/CLKIN MXO
NC
MXVSS
1.8V
MXVDD
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
In this option, a 1.8-V LVCMOS-Compatible Clock Input is used as the external clock input to the DM6437.The external connections are shown in Figure 6-10 . The MXI/CLKIN pin is connected to the 1.8-VLVCMOS-Compatible clock source. The MXO pin is left unconnected. The MXV
SS
pin is connected toboard ground (V
SS
). The MXV
DD
pin can be connected to the same 1.8-V power supply as DV
DDR2
.
Figure 6-10. 1.8-V LVCMOS-Compatible Clock Input
The clock source must meet the MXI/CLKIN timing requirements in Section 6.7.4 ,Clock PLL ElectricalData/Timing (Input and Output Clocks).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 193
I TEXAS INSTRUMENTS m S 1! a /
6.7 Clock PLLs
6.7.1 PLL1 and PLL2
PLLPWR18
C2
C1
EMI Filter
+1.8 V
0.01 mF
DM643x
PLL2
PLL1
0.1 mF
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
There are two independently controlled PLLs on DM6437. PLL1 generates the frequencies required for theDSP, DMA, VPFE, and other peripherals. PLL2 generates the frequencies required for the DDR2 interfaceand the VPBE in certain modes. The recommended reference clock for both PLLs is the 27-MHz crystalinput.
Both PLL1 and PLL2 power is supplied externally via the 1.8 V PLL power-supply pin (PLL
PWR18
). Anexternal EMI filter circuit must be added to PLL
PWR18
, as shown in Figure 6-11 . The 1.8-V supply of theEMI filter must be from the same 1.8-V power plane supplying the device’s 1.8-V I/O power-supply pins(DV
DDDR2
). TI recommends EMI filter manufacturer Murata, part number NFM18CC222R1C3.
All PLL external components (C1, C2, and the EMI Filter) must be placed as close to the device aspossible. For the best performance, TI recommends that all the PLL external components be on a singleside of the board without jumpers, switches, or components other than the ones shown in Figure 6-11 . Forreduced PLL jitter, maximize the spacing between switching signals and the PLL external components(C1, C2, and the EMI Filter).
Figure 6-11. PLL1 and PLL2 External Connection
The minimum CLKIN rise and fall times should also be observed. For the input clock timing requirements,see Section 6.7.4 ,Clock PLL Electrical Data/Timing (Input and Output Clocks).
There is an allowable range for PLL multiplier (PLLM). There is a minimum and maximum operatingfrequency for MXI/CLKIN, PLLOUT, and the device clocks (SYSCLKs). The PLL Controllers must beconfigured not to exceed any of these constraints documented in this section (certain combinations ofexternal clock inputs, internal dividers, and PLL multiply ratios might not be supported). For theseconstraints (ranges), see Table 6-14 through Table 6-16 .
Table 6-14. PLL1 and PLL2 Multiplier Ranges
PLL MULTIPLIER (PLLM) MIN MAX
PLL1 Multiplier x14 x30
PLL2 Multiplier x14 x32
Peripheral Information and Electrical Specifications194 Submit Documentation Feedback
I TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-15. PLLC1 Clock Frequency Ranges
CLOCK SIGNAL NAME MIN MAX UNIT
MXI/CLKIN
(1)
20 30 MHz
-7 devices 300 700 MHzPLLOUT
CV
DD
= 1.2 V
-6/-5/-4/-L/-Q6/-Q5/-Q4 devices 300 600 MHz
-7 devices 300 520 MHzPLLOUT
CV
DD
= 1.05 V
-6/-5/-4/-L/-Q5 devices 300 520 MHz
-7 devices 700 MHz
-Q6 devices 660 MHzSYSCLK1
(2)
(CLKDIV1 Domain)
-6/-L devices 600 MHzCV
DD
= 1.2 V
-5/-Q5 devices 500 MHz
-4/-Q4 devices 400 MHz
-7 devices 520 MHz
-6/-L devices 450 MHzSYSCLK1
(2)
(CLKDIV1 Domain),CV
DD
= 1.05 V
-5/-Q5 devices 400 MHz
-4 devices 350 MHz
(1) MXI/CLKIN input clock is used for both PLL Controllers (PLLC1 and PLLC2).(2) Applies to "tape and reel" part number counterparts as well. For more information, see Section 2.8 ,Device and Development-Support Tool Nomenclature.
Table 6-16. PLLC2 Clock Frequency Ranges
CLOCK SIGNAL NAME MIN MAX UNIT
MXI/CLKIN
(1)
20 30 MHz
At 1.2-V CV
DD
300 900 MHzPLLOUT
At 1.05-V CV
DD
300 666 MHz
PLL2_SYSCLK1 (to DDR2 PHY) 333 MHz
PLL2_SYSCLK2 (to VPBE) 54 MHz
(1) MXI/CLKIN input clock is used for both PLL Controllers (PLLC1 and PLLC2).
Both PLL1 and PLL2 have stabilization, lock, and reset timing requirements that must be followed.
The PLL stabilization time is the amount of time that must be allotted for the internal PLL regulators tobecome stable after the PLL is powered up (after PLLCTL.PLLPWRDN bit goes through a 1-to-0transition). The PLL should not be operated until this stabilization time has expired. This stabilization stepmust be applied after these resets—a Power-on Reset, a Warm Reset, or a Max Reset, as thePLLCTL.PLLPWRDN bit resets to a "1". For the PLL stabliziation time value, see Table 6-17 .
The PLL reset time is the amount of wait time needed for the PLL to properly reset (writing PLLRST = 0)before bringing the PLL out of reset (writing PLLRST = 1). For the PLL reset time value, see Table 6-17 .
The PLL lock time is the amount of time needed from when the PLL is taken out of reset (PLLRST = 1with PLLEN = 0) to when to when the PLL controller can be switched to PLL mode (PLLEN = 1). For thePLL lock time value, see Table 6-17 .
Table 6-17. PLL1 and PLL2 Stabilization, Lock, and Reset Times
PLL STABILIZATION/LOCK/RESET
MIN TYP MAX UNITTIME
PLL Stabilization Time 150 µs
PLL Lock Time 2000C
(1)
ns
PLL Reset Time 128C
(1)
ns
(1) C = CLKIN cycle time in ns. For example, when MXI/CLKIN frequency is 27 MHz, use C = 37. 037 ns.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 195
l TEXAS INSTRUMENTS SPRU978
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
For details on the PLL initialization software sequence, see the TMS320DM643x DMP DSP SubsystemReference Guide (literature number SPRU978 ).
For more information on the clock domains and their clock ratio restrictions, see Section 6.3.4 ,DM6437Power and Clock Domains.
196 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU978
6.7.2 PLL Controller Register Description(s)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
A summary of the PLL controller registers is shown in Table 6-18 . For more details, see theTMS320DM643x DMP DSP Subsystem Reference Guide (literature number SPRU978 ).
Table 6-18. PLL and Reset Controller Registers Memory Map
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
PLL1 Controller Registers
0x01C4 0800 PID Peripheral ID Register
0x01C4 08E4 RSTYPE Reset Type Register
0x01C4 0900 PLLCTL PLL Controller 1 PLL Control Register
0x01C4 0910 PLLM PLL Controller 1 PLL Multiplier Control Register
0x01C4 0918 PLLDIV1 PLL Controller 1 Divider 1 Register (SYSCLK1)
0x01C4 091C PLLDIV2 PLL Controller 1 Divider 2 Register (SYSCLK2)
0x01C4 0920 PLLDIV3 PLL Controller 1 Divider 3 Register (SYSCLK3)
0x01C4 0924 OSCDIV1 PLL Controller 1 Oscillator Divider 1 Register (OBSCLK) [CLKOUT0 pin]
0x01C4 0928 Reserved
0x01C4 092C BPDIV PLL Controller 1 Bypass Divider Register (SYSCLKBP)
0x01C4 0938 PLLCMD PLL Controller 1 Command Register
0x01C4 093C PLLSTAT PLL Controller 1 Status Register (Shows PLLC1 Status)
PLL Controller 1 Clock Align Control Register0x01C4 0940 ALNCTL
(Indicates Which SYSCLKs Need to be Aligned for Proper Device Operation)
PLL Controller 1 PLLDIV Divider Ratio Change Status Register0x01C4 0944 DCHANGE
(Indicates if SYSCLK Divide Ratio has Been Modified)
0x01C4 0948 CKEN PLL Controller 1 Clock Enable Control Register
0x01C4 094C CKSTAT PLL Controller 1 Clock Status Register (For All Clocks Except SYSCLKx)
0x01C4 0950 SYSTAT PLL Controller 1 SYSCLK Status Register (Indicates SYSCLK on/off Status)
0x01C4 0960 Reserved
0x01C4 0964 Reserved
PLL2 Controller Registers
0x01C4 0C00 PID Peripheral ID Register
0x01C4 0D00 PLLCTL PLL Controller 2 PLL Control Register
0x01C4 0D10 PLLM PLL Controller 2 PLL Multiplier Control Register
0x01C4 0D18 PLLDIV1 PLL Controller 2 Divider 1 Register (SYSCLK1)
0x01C4 0D1C PLLDIV2 PLL Controller 2 Divider 2 Register (SYSCLK2)
0x01C4 0D20 - 0x01C4 0D2C Reserved
0x01C4 0D2C BPDIV PLL Controller 2 Bypass Divider Register (SYSCLKBP)
0x01C4 0D38 PLLCMD PLL Controller 2 Command Register
0x01C4 0D3C PLLSTAT PLL Controller 2 Status Register (Shows PLLC2 Status)
PLL Controller 2 Clock Align Control Register0x01C4 0D40 ALNCTL
(Indicates Which SYSCLKs Need to be Aligned for Proper Device Operation)
PLL Controller 2 PLLDIV Divider Ratio Change Status Register0x01C4 0D44 DCHANGE
(Indicates if SYSCLK Divide Ratio has Been Modified)
0x01C4 0D48 Reserved
0x01C4 0D4C CKSTAT PLL Controller 2 Clock Status Register (For All Clocks Except SYSCLKx)
0x01C4 0D50 SYSTAT PLL Controller 2 SYSCLK Status Register (Indicates SYSCLK on/off Status)
0x01C4 0D54 - 0x01C4 0FFF Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 197
l TEXAS INSTRUMENTS
6.7.3 Clock PLL Considerations with External Clock Sources
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
If the internal oscillator is bypassed, to minimize the clock jitter a single clean power supply should powerboth the DM6437 device and the external clock oscillator circuit. The minimum CLKIN rise and fall timesshould also be observed. For the input clock timing requirements, see Section 6.7.4 ,Clock PLL ElectricalData/Timing (Input and Output Clocks).
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clocksource must meet the device requirements in this data manual (see Section 5.3 ,Electrical CharacteristicsOver Recommended Ranges of Supply Voltage and Operating Temperature and Section 6.7.4 ,Clock PLLElectrical Data/Timing (Input and Output Clocks).
198 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU978 14* 4'1 ‘ ‘ ‘ J\}\}\j\/(4\L4\
6.7.4 Clock PLL Electrical Data/Timing (Input and Output Clocks)
MXI/CLKIN
2
3
4
4
51
CLK_OUT0
(Divide-by-1)
4
4
2
1
3
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-19. Timing Requirements for MXI/CLKIN
(1) (2) (3) (4)
(see Figure 6-12 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
c(MXI)
Cycle time, MXI/CLKIN 33. 3 50 ns
2 t
w(MXIH)
Pulse duration, MXI/CLKIN high 0.45C 0.55C ns
3 t
w(MXIL)
Pulse duration, MXI/CLKIN low 0.45C 0.55C ns
4 t
t(MXI)
Transition time, MXI/CLKIN 0.05C ns
5 t
J(MXI)
Period jitter, MXI/CLKIN 0.02C ns
Frequency Stability
(5)
±50 ppm
(1) The MXI/CLKIN frequency and PLL multiply factor should be chosen such that the resulting clock frequency is within the specific rangefor CPU operating frequency. For example, for a -6 speed device with a 27 MHz CLKIN frequency, the PLL multiply factor should be22.(2) The reference points for the rise and fall transitions are measured at V
IL
MAX and V
IH
MIN.(3) For more details on the PLL multiplier factors, see the TMS320DM63x DMP DSP Subsystem Reference Guide (literature numberSPRU978 ).(4) C = CLKIN cycle time in ns. For example, when MXI/CLKIN frequency is 27 MHz, use C = 37. 037 ns.(5) Applies only when using the VPBE for NTSC or PAL compliant video. For video and audio applications, stability of the input clock is veryimportant. The user should select a clock with low enough ppm to ensure good video and audio quality for the specific application. If theVPBE is used for NTSC or PAL compliant video output, TI recommends a 27-MHz, 50-ppm clock. For more details on this NTSC andPAL compliant output video, see Section 6.10.2 ,Video Processing Back-End (VPBE).
Figure 6-12. MXI/CLKIN Timing
Table 6-20. Switching Characteristics Over Recommended Operating Conditions for CLKOUT0
(1) (2)
(see Figure 6-13 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
1 t
C
Cycle time, CLKOUT0 33.3 50 ns
2 t
w(CLKOUT0H)
Pulse duration, CLKOUT0 high 0.45P 0.55P ns
3 t
w(CLKOUT0L)
Pulse duration, CLKOUT0 low 0.45P 0.55P ns
4 t
t(CLKOUT0)
Transition time, CLKOUT0 0.05P ns
(1) The reference points for the rise and fall transitions are measured at V
OL
MAX and V
OH
MIN.(2) P = 1/CLKOUT0 clock frequency in nanoseconds (ns). For example, when CLKOUT0 frequency is 27 MHz, use P = 37.04 ns.
Figure 6-13. CLKOUT0 Timing
Submit Documentation Feedback Peripheral Information and Electrical Specifications 199
l TEXAS INSTRUMENTS SPRU978
6.8 Interrupts
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The C64x+ DSP interrupt controller combines device events into 12 prioritized interrupts. The source foreach of the 12 CPU interrupts is user programmable and is listed in Table 6-21 . Also, the interruptcontroller controls the generation of the CPU exception and emulation interrupts. The NMI input to theC64x+ DSP interrupt controller is not connected internally; therefore, the NMI interrupt is not available.Table 6-22 summarizes the C64x+ interrupt controller registers and memory locations. For more details onDSP interrupt controller, see the TMS320DM643x DMP DSP Subsystem Reference Guide (literaturenumber SPRU978 ).
Table 6-21. DM6437 DSP System Event Mapping
DSP DSPSYSTEM SYSTEMACRONYM SOURCE ACRONYM SOURCEEVENT EVENTNUMBER NUMBER
0 EVT0 C64x+ Int Ctl 0 64 GPIO0 GPIO
1 EVT1 C64x+ Int Ctl 1 65 GPIO1 GPIO
2 EVT2 C64x+ Int Ctl 2 66 GPIO2 GPIO
3 EVT3 C64x+ Int Ctl 3 67 GPIO3 GPIO
4 TINTL0 Timer 0 – TINT12 68 GPIO4 GPIO
5 TINTH0 Timer 0 – TINT34 69 GPIO5 GPIO
6 TINTL1 Timer 1 – TINT12 70 GPIO6 GPIO
7 TINTH1 Timer 1 – TINT34 71 GPIO7 GPIO
8 WDINT Timer 2 – TINT12 72 GPIOBNK0 GPIO
9 EMU_DTDMA C64x+ EMC 73 GPIOBNK1 GPIO
10 Reserved 74 GPIOBNK2 GPIO
11 EMU_RTDXRX C64x+ RTDX 75 GPIOBNK3 GPIO
12 EMU_RTDXTX C64x+ RTDX 76 GPIOBNK4 GPIO
13 IDMAINT0 C64x+ EMC 0 77 GPIOBNK5 GPIO
14 IDMAINT1 C64x+ EMC 1 78 GPIOBNK6 GPIO
15 Reserved 79 Reserved
16 Reserved 80 PWM0 PWM0
17 Reserved 81 PWM1 PWM1
18 Reserved 82 PWM2 PWM2
19 Reserved 83 IICINT0 I2C
20 Reserved 84 UARTINT0 UART0
21 Reserved 85 UARTINT1 UART1
22 Reserved 86 Reserved
23 Reserved 87 Reserved
24 VDINT0 VPSS – CCDC 0 88 Reserved
25 VDINT1 VPSS – CCDC 1 89 Reserved
26 VDINT2 VPSS – CCDC 2 90 Reserved
27 HISTINT VPSS – Histogram 91 Reserved
28 H3AINT VPSS – AE/AWB/AF 92 Reserved
29 PRVUINT VPSS – Previewer 93 Reserved
30 RSZINT VPSS – Resizer 94 Reserved
31 Reserved 95 Reserved
VENCINT VPSS – VPBE (VENC) INTERR C64x+ Interrupt Controller Dropped CPU32 96
Interrupt Event
33 Reserved 97 EMC_IDMAERR C64x+ EMC Invalid IDMA Parameters
34 EDMA3CC_GINT EDMACC Global Interupt 98 Reserved
35 EDMA3CC_INT0 EDMACC Interrupt Region 0 99 Reserved
36 EDMA3CC_INT1 EDMACC Interrupt Region 1 100 Reserved
37 EDMA3CC_ERRINT EDMA CC Error 101 Reserved
38 EDMA3TC_ERRINT0 EDMA TC0 Error 102 Reserved
39 EDMA3TC_ERRINT1 EDMA TC1 Error 103 Reserved
40 EDMA3TC_ERRINT2 EDMA TC2 Error 104 Reserved
41 PSCINT PSC ALLINT 105 Reserved
42 Reserved 106 Reserved
Peripheral Information and Electrical Specifications200 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-21. DM6437 DSP System Event Mapping (continued)
DSP DSPSYSTEM SYSTEMACRONYM SOURCE ACRONYM SOURCEEVENT EVENTNUMBER NUMBER
43 EMACINT EMAC Memory Controller 107 Reserved
44 Reserved 108 Reserved
45 Reserved 109 Reserved
46 Reserved 110 Reserved
47 HPIINT HPI 111 Reserved
48 MBXINT0 McBSP0 Transmit 112 Reserved
49 MBRINT0 McBSP0 Receive 113 PMC_ED C64x+ PMC
50 MBXINT1 McBSP1 Transmit 114 Reserved
51 MBRINT1 McBSP1 Receive 115 Reserved
52 Reserved 116 UMCED1 C64x+ UMC 1
53 DDRINT DDR2 Memory Controller 117 UMCED2 C64x+ UMC 2
54 EMIFAINT EMIFA 118 PDCINT C64x+ PDC
55 VLQINT VLYNQ 119 SYSCMPA C64x+ SYS
56 PCIINT PCI 120 PMCCMPA C64x+ PMC
57 HECC0INT HECC Interrupt 0 121 PMCDMPA C64x+ PMC
58 HECC1INT HECC Interrupt 1 122 DMCCMPA C64x+ DMC
59 AXINT0 McASP0 Transmit 123 DMCDMPA C64x+ DMC
60 ARINT0 McASP0 Receive 124 UMCCMPA C64x+ UMC
61 Reserved 125 UMCDMPA C64x+ UMC
62 Reserved 126 EMCCMPA C64x+ EMC
63 Reserved 127 EMCBUSERR C64x+ EMC
Table 6-22. C64x+ Interrupt Controller Registers
HEX ADDRESS ACRONYM REGISTER DESCRIPTION
0x0180 0000 EVTFLAG0 Event flag register 0
0x0180 0004 EVTFLAG1 Event flag register 1
0x0180 0008 EVTFLAG2 Event flag register 2
0x0180 000C EVTFLAG3 Event flag register 3
0x0180 0020 EVTSET0 Event set register 0
0x0180 0024 EVTSET1 Event set register 1
0x0180 0028 EVTSET2 Event set register 2
0x0180 002C EVTSET3 Event set register 3
0x0180 0040 EVTCLR0 Event clear register 0
0x0180 0044 EVTCLR1 Event clear register 1
0x0180 0048 EVTCLR2 Event clear register 2
0x0180 004C EVTCLR3 Event clear register 3
0x0180 0080 EVTMASK0 Event mask register 0
0x0180 0084 EVTMASK1 Event mask register 1
0x0180 0088 EVTMASK2 Event mask register 2
0x0180 008C EVTMASK3 Event mask register 3
0x0180 00A0 MEVTFLAG0 Masked event flag register 0
0x0180 00A4 MEVTFLAG1 Masked event flag register 1
0x0180 00A8 MEVTFLAG2 Masked event flag register 2
0x0180 00AC MEVTFLAG3 Masked event flag register 3
0x0180 00C0 EXPMASK0 Exception mask register 0
0x0180 00C4 EXPMASK1 Exception mask register 1
0x0180 00C8 EXPMASK2 Exception mask register 2
0x0180 00CC EXPMASK3 Exception mask register 3
Submit Documentation Feedback Peripheral Information and Electrical Specifications 201
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-22. C64x+ Interrupt Controller Registers (continued)
HEX ADDRESS ACRONYM REGISTER DESCRIPTION
0x0180 00E0 MEXPFLAG0 Masked exception flag register 0
0x0180 00E4 MEXPFLAG1 Masked exception flag register 1
0x0180 00E8 MEXPFLAG2 Masked exception flag register 2
0x0180 00EC MEXPFLAG3 Masked exception flag register 3
0x0180 0104 INTMUX1 Interrupt mux register 1
0x0180 0108 INTMUX2 Interrupt mux register 2
0x0180 010C INTMUX3 Interrupt mux register 3
0x0180 0180 INTXSTAT Interrupt exception status
0x0180 0184 INTXCLR Interrupt exception clear
0x0180 0188 INTDMASK Dropped interrupt mask register
Peripheral Information and Electrical Specifications202 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRUQSS SPRU984
6.9 External Memory Interface (EMIF)
6.9.1 Asynchronous EMIF (EMIFA)
6.9.2 NAND (NAND, SmartMedia, xD)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
DM6437 supports several memory and external device interfaces, including:Asynchronous EMIF (EMIFA) for interfacing to NOR Flash, SRAM, etc.NAND Flash
The DM6437 Asynchronous EMIF (EMIFA) provides an 8-bit data bus, an address bus width up to 24-bits,and 4 chip selects, along with memory control signals. These signals are multiplexed between theseperipherals:
EMIFA and NAND interfacesVPFE (CCDC)VPBE (VENC)PCI GPIO
The EMIFA interface provides both the asynchronous EMIF and NAND interfaces. Four chip selects areprovided and each are individually configurable to provide either EMIFA or NAND support. The NANDfeatures supported are as follows.NAND flash on up to 4 asynchronous chip selects.8-bit data bus widthProgrammable cycle timings.Performs ECC calculation.NAND Mode also supports SmartMedia and xD memory cardsBoot ROM supports booting of the DM6437 from NAND flash located at CS2
The memory map for EMIFA and NAND registers is shown in Table 6-23 . For more details on the EMIFAand NAND interfaces, see Section 2.9 ,Documentation Support for the link to the TMS320DM643x DMPPeripherals Overview Reference Guide (literature number SPRU983 ) for the TMS320DM643xAsynchronous External Memory Interface (EMIF) User's Guide (literature number SPRU984 ).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 203
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-23. EMIFA/NAND Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01E0 0000 RCSR Revision Code and Status Register
0x01E0 0004 AWCCR Asynchronous Wait Cycle Configuration Register
0x01E0 0008 - 0x01E0 000F - Reserved
0x01E0 0010 A1CR Asynchronous 1 Configuration Register (CS2 Space)
0x01E0 0014 A2CR Asynchronous 2 Configuration Register (CS3 Space)
0x01E0 0018 A3CR Asynchronous 3 Configuration Register (CS4 Space)
0x01E0 001C A4CR Asynchronous 4 Configuration Register (CS5 Space)
0x01E0 0020 - 0x01E0 003F - Reserved
0x01E0 0040 EIRR EMIF Interrupt Raw Register
0x01E0 0044 EIMR EMIF Interrupt Mask Register
0x01E0 0048 EIMSR EMIF Interrupt Mask Set Register
0x01E0 004C EIMCR EMIF Interrupt Mask Clear Register
0x01E0 0050 - 0x01E0 005F - Reserved
0x01E0 0060 NANDFCR NAND Flash Control Register
0x01E0 0064 NANDFSR NAND Flash Status Register
0x01E0 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space)
0x01E0 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space)
0x01E0 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space)
0x01E0 007C NANDF4ECC NAND Flash 4 ECC Register (CS5 Space)
0x01E0 0080 - 0x01E0 0FFF - Reserved
Peripheral Information and Electrical Specifications204 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.9.3 EMIFA Electrical Data/Timing
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-24. Timing Requirements for Asynchronous Memory Cycles for EMIFA Module
(1)
(see Figure 6-14 and Figure 6-15 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN NOM MAX
READS and WRITES
2 t
w(EM_WAIT)
Pulse duration, EM_WAIT assertion and deassertion 2E ns
READS
12 t
su(EMDV-EMOEH)
Setup time, EM_D[7:0] valid before EM_OE high 5 ns
13 t
h(EMOEH-EMDIV)
Hold time, EM_D[7:0] valid after EM_OE high 0 ns
t
su(EMWAIT-
14 Setup time, EM_WAIT asserted before EM_OE high
(2)
4E + 5 nsEMOEH)
WRITES
t
su(EMWAIT-
28 Setup time, EM_WAIT asserted before EM_WE high
(2)
4E + 5 nsEMWEH)
(1) E = SYSCLK3 period in ns for EMIFA. For example, when running the DSP CPU at 600 MHz, use E = 10 ns.(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extendedwait states. Figure 6-16 and Figure 6-17 describe EMIF transactions that include extended wait states inserted during the STROBEphase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of wherethe HOLD phase would begin if there were no extended wait cycles.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 205
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-25. Switching Characteristics Over Recommended Operating Conditions for AsynchronousMemory Cycles for EMIFA Module
(1) (2)
(see Figure 6-14 and Figure 6-15 )
-7/-6/-5/-4NO
-L/-Q6/-Q5/-Q4PARAMETER UNIT.
MIN NOM MAX
READS and WRITES
1 t
d(TURNAROUND)
Turn around time (TA + 1) * E ns
READS
(RS + RST + RH +3 t
c(EMRCYCLE)
EMIF read cycle time nsTA + 4) * E
(3)
Output setup time, EM_CS[5:2] low to
(RS + 1) * E - 4 (RS + 1) * E + 4 nsEM_OE low (SS = 0)4 t
su(EMCSL-EMOEL)
Output setup time, EM_CS[5:2] low to
-4 4 nsEM_OE low (SS = 1)
Output hold time, EM_OE high to
(RH + 1) * E - 4 (RH + 1) * E + 4 nsEM_CS[5:2] high (SS = 0)5 t
h(EMOEH-EMCSH)
Output hold time, EM_OE high to
-4 4 nsEM_CS[5:2] high (SS = 1)
Output setup time, EM_BA[1:0] valid to6 t
su(EMBAV-EMOEL)
(RS + 1) * E - 4 (RS + 1) * E + 4 nsEM_OE low
Output hold time, EM_OE high to7 t
h(EMOEH-EMBAIV)
(RH + 1) * E - 4 (RH + 1) * E + 4 nsEM_BA[1:0] invalid
Output setup time, EM_A[21:0] valid to8 t
su(EMBAV-EMOEL)
(RS + 1) * E - 4 (RS + 1) * E + 4 nsEM_OE low
Output hold time, EM_OE high to9 t
h(EMOEH-EMBAIV)
(RH + 1) * E - 4 (RH + 1) * E + 4 nsEM_A[21:0] invalid
10 t
w(EMOEL)
EM_OE active low width (RST + 1) * E
(3)
ns
Delay time from EM_WAIT deasserted11 t
d(EMWAITH-EMOEH)
4E + 4 nsto EM_OE high
WRITES
(WS + WST + WH +15 t
c(EMWCYCLE)
EMIF write cycle time nsTA + 4) * E
(3)
Output setup time, EM_CS[5:2] low to
(WS + 1) * E - 4 (WS + 1) * E + 4 nsEM_WE low (SS = 0)16 t
su(EMCSL-EMWEL)
Output setup time, EM_CS[5:2] low to
-4 4 nsEM_WE low (SS = 1)
Output hold time, EM_WE high to
(WH + 1) * E - 4 (WH + 1) * E + 4 nsEM_CS[5:2] high (SS = 0)17 t
h(EMWEH-EMCSH)
Output hold time, EM_WE high to
-4 4 nsEM_CS[5:2] high (SS = 1)
Output setup time, EM_R/ W valid to18 t
su(EMRNW-EMWEL)
(WS + 1) * E - 4 (WS + 1) * E + 4 nsEM_WE low
Output hold time, EM_WE high to19 t
h(EMWEH-EMRNW)
(WH + 1) * E - 4 (WH + 1) * E + 4 nsEM_R/ W invalid
Output setup time, EM_BA[1:0] valid to20 t
su(EMBAV-EMWEL)
(WS + 1) * E - 4 (WS + 1) * E + 4 nsEM_WE low
Output hold time, EM_WE high to21 t
h(EMWEH-EMBAIV)
(WH + 1) * E - 4 (WH + 1) * E + 4 nsEM_BA[1:0] invalid
Output setup time, EM_A[21:0] valid to22 t
su(EMAV-EMWEL)
(WS + 1) * E - 4 (WS + 1) * E + 4 nsEM_WE low
Output hold time, EM_WE high to23 t
h(EMWEH-EMAIV)
(WH + 1) * E - 4 (WH + 1) * E + 4 nsEM_A[21:0] invalid
(1) RS = Read setup, RST = Read STrobe, RH = Read Hold, WS = Write Setup, WST = Write STrobe, WH = Write Hold, TA = TurnAround, EW = Extend Wait mode, SS = Select Strobe mode. These parameters are programmed via the Asynchronous nConfigurationand Asynchronous Wait Cycle Configuration Registers.(2) E = SYSCLK3 period in ns for EMIFA. For example, when running the DSP CPU at 600 MHz, use E = 10 ns.(3) When EW = 1, the EMIF will extend the strobe period up to 4,096 additional cycles when the EM_WAIT pin is asserted by the externaldevice.
Peripheral Information and Electrical Specifications206 Submit Documentation Feedback
‘5‘ TEXAS INSTRUMENTS ”3qu E: H H$x 1%} XHX‘CL
EM_CS[5:2]
EM_BA[1:0]
13
12
EM_A[21:0]
EM_OE
EM_D[7:0]
EM_WE
10
5
9
7
4
8
6
3
1
EM_R/W
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-25. Switching Characteristics Over Recommended Operating Conditions for AsynchronousMemory Cycles for EMIFA Module (see Figure 6-14 and Figure 6-15 ) (continued)
-7/-6/-5/-4NO
-L/-Q6/-Q5/-Q4PARAMETER UNIT.
MIN NOM MAX
24 t
w(EMWEL)
EM_WE active low width (WST + 1) * E
(3)
ns
Delay time from EM_WAIT deasserted25 t
d(EMWAITH-EMWEH)
4E + 4 nsto EM_WE high
Output setup time, EM_D[7:0] valid to26 t
su(EMDV-EMWEL)
(WS + 1) * E - 4 (WS + 1) * E + 4 nsEM_WE low
Output hold time, EM_WE high to27 t
h(EMWEH-EMDIV)
(WH + 1) * E - 4 (WH + 1) * E + 4 nsEM_D[7:0] invalid
Figure 6-14. Asynchronous Memory Read Timing for EMIF
Submit Documentation Feedback Peripheral Information and Electrical Specifications 207
‘5‘ TEXAS INSTRUMENTS “4‘ P‘ 1\\\\ \\ E? F xwxut‘t ‘Hxflmj fix 144‘ 1% TX
EM_CS[5:2]
EM_BA[1:0]
EM_A[21:0]
EM_WE
EM_D[7:0]
EM_OE
EM_R/W
15
1
16
18
20
22 24
17
19
21
23
26
27
EM_CS[5:2]
11
Asserted Deasserted
2
2
EM_BA[1:0]
EM_A[21:0]
EM_D[7:0]
EM_OE
EM_WAIT
SETUP STROBE Extended Due to EM_WAIT STROBE HOLD
14
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 6-15. Asynchronous Memory Write Timing for EMIF
Figure 6-16. EM_WAIT Read Timing Requirements
208 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
EM_CS[5:2]
25
Asserted Deasserted
2
2
EM_BA[1:0]
EM_A[21:0]
EM_D[7:0]
EM_WE
EM_WAIT
SETUP STROBE Extended Due to EM_WAIT STROBE HOLD
28
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 6-17. EM_WAIT Write Timing Requirements
Submit Documentation Feedback Peripheral Information and Electrical Specifications 209
l TEXAS INSTRUMENTS SPRUQBB SPRAALG SPRAALG
6.9.4 DDR2 Memory Controller
6.9.4.1 DDR2 Memory Controller Electrical Data/Timing
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The DDR2 Memory Controller is a dedicated interface to DDR2 SDRAM. It supports JESD79D-2Astandard compliant DDR2 SDRAM Devices and can interface to either 16-bit or 32-bit DDR2 SDRAMdevices. For details on the DDR2 Memory Controller, see the TMS320DM643x DMP DDR2 MemoryController User’s Guide (literature number SPRU986 ).
DDR2 SDRAM plays a key role in a DaVinci-based system. Such a system is expected to require asignificant amount of high-speed external memory for:Buffering of input image data from sensors or video sourcesIntermediate buffering for processing/resizing of image data in the VPFENumerous OSD display buffersIntermediate buffering for large raw Bayer data image files while performing image processingfunctions
Buffering for intermediate data while performing video encode and decode functionsStorage of executable code for the DSP
A memory map of the DDR2 Memory Controller registers is shown in Table 6-26 .
Table 6-26. DDR2 Memory Controller Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C4 004C DDRVTPER DDR2 VTP Enable Register
0x01C4 2038 DDRVTPR DDR2 VTP Register
0x2000 0000 - 0x2000 0003 - Reserved
0x2000 0004 SDRSTAT SDRAM Status Register
0x2000 0008 SDBCR SDRAM Bank Configuration Register
0x2000 000C SDRCR SDRAM Refresh Control Register
0x2000 0010 SDTIMR SDRAM Timing Register
0x2000 0014 SDTIMR2 SDRAM Timing Register 2
0x2000 0020 PBBPR Peripheral Bus Burst Priority Register
0x2000 0024 - 0x2000 00BF - Reserved
0x2000 00C0 IRR Interrupt Raw Register
0x2000 00C4 IMR Interrupt Masked Register
0x2000 00C8 IMSR Interrupt Mask Set Register
0x2000 00CC IMCR Interrupt Mask Clear Register
0x2000 00D0 - 0x2000 00E3 - Reserved
0x2000 00E4 DDRPHYCR DDR PHY Control Register
0x2000 00E8 - 0x2000 00EF - Reserved
0x2000 00F0 VTPIOCR DDR VTP IO Control Register
0x2000 00F4 - 0x2000 7FFF - Reserved
The Implementing DDR2 PCB Layout on the TMS320DM643x DMP DMSoC Application Report (literaturenumber SPRAAL6 ) specifies a complete DDR2 interface solution for the DM6437 as well as a list ofcompatible DDR2 devices. TI has performed the simulation and system characterization to ensure allDDR2 interface timings in this solution are met.
TI only supports board designs that follow the guidelines outlined in the Implementing DDR2 PCB Layouton the TMS320DM643x DMP DMSoC Application Report (literature number SPRAAL6 ).
Peripheral Information and Electrical Specifications210 Submit Documentation Feedback
l TEXAS INSTRUMENTS
DDR_CLK
1
6.10 Video Processing Sub-System (VPSS) Overview
6.10.1 Video Processing Front-End (VPFE)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-27. Switching Characteristics Over Recommended Operating Conditions for DDR2 MemoryController
(1) (2)
(see Figure 6-18 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
1 t
c(DDR_CLK)
Cycle time, DDR_CLK 6 8 ns
(1) DDR_CLK cycle time = 2 x PLL2 _SYSCLK1 cycle time.(2) The PLL2 Controller must be programmed such that the resulting DDR_CLK clock frequency is within the specified range.
Figure 6-18. DDR2 Memory Controller Clock Timing
The DM6437 Video Processing Sub-System (VPSS) provides a Video Processing Front End (VPFE) inputinterface for external imaging peripherals (i.e., image sensors, video decoders, etc.) and a VideoProcessing Back End (VPBE) output interface for display devices, such as analog SDTV displays, digitalLCD panels, HDTV video encoders, etc.
The VPSS register memory mapping is shown in Table 6-28 .
Table 6-28. VPSS Register Descriptions
HEX ADDRESS RANGE REGISTER ACRONYM Description
0x01C7 3400 PID Peripheral Revision and Class Information
0x01C7 3404 PCR VPSS Control Register
0x01C7 3408 - Reserved
0x01C7 3508 SDR_REG_EXP SDRAM Non Real-Time Read Request Expand
0x01C7 350C - - Reserved0x01C7 3FFF
The Video Processing Front-End (VPFE) consists of the CCD Controller (CCDC), Preview Engine,Resizer, Hardware 3A (H3A) Statistic Generator, and Histogram blocks. Together, these modules provideDM6437 with a powerful and flexible front-end interface. These modules are briefly described below:The CCDC provides an interface to image sensors and digital video sources.The Preview Engine is a parameterized hardwired image processing block which is used for convertingRAW color data from a Bayer pattern to YUV 4:2:2.The Resizer module re-sizes the input image data to the desired display or video encoding resolution.The H3A module provides control loops for Auto Focus (AF), Auto White Balance (AWB) and AutoExposure (AE).The Histogram module bins input color pixels, depending on the amplitude, and provides statisticsrequired to implement various 3A (AE/AF/AWB) algorithms and tune the final image/video output.
The VPFE register memory mapping is shown in Table 6-29 .
Table 6-29. VPFE Register Address Range Descriptions
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C7 0400 – 0x01C7 07FF CCDC VPFE – CCD Controller
0x01C7 0800 – 0x01C7 0BFF PREV VPFE – Preview Engine/Image Signal Processor
0x01C7 0C00 – 0x01C7 09FF RESZ VPFE – Resizer
Submit Documentation Feedback Peripheral Information and Electrical Specifications 211
l TEXAS INSTRUMENTS
6.10.1.1 CCD Controller (CCDC)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-29. VPFE Register Address Range Descriptions (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C7 1000 – 0x01C7 13FF HIST VPFE – Histogram
0x01C7 1400 – 0x01C7 17FF H3A VPFE – Hardware 3A (Auto-Focus/WB/Exposure)
0x01C7 3400 0x01C7 3FFF VPSS VPSS Shared Buffer Logic Registers
The CCDC receives raw image/video data from sensors (CMOS or CCD) or YUV video data in numerousformats from video decoder devices. The following features are supported by the CCDC module.Conventional Bayer pattern format.Generates HD/VD timing signals and field ID to an external timing generator or can synchronize to anexternal timing generator.Interface to progressive and interlaced sensors.REC656/CCIR-656 standard (YCbCr 4:2:2 format, either 8- or 16-bit).YCbCr 4:2:2 format, either 8- or 16-bit with discrete H and VSYNC signals.Up to 16-bit input.Optical black clamping signal generation.Shutter signal control.Digital clamping and black level compensation.10-bit to 8-bit A-law compression.Low-pass filter prior to writing to SDRAM. If this filter is enabled, 2 pixels each in the left and rightedges of each line are cropped from the output.Output range from 16-bits to 8-bits wide (8-bits wide allows for 50% saving in storage area).Downsampling via programmable culling patterns.Control output to the DDR2 via an external write enable signal.Up to 16K pixels (image size) in both the horizontal and vertical direction.
The CCDC register memory mapping is shown in Table 6-30 .
Table 6-30. CCDC Register Descriptions
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C7 0400 PID Peripheral Revision and Class Information
0x01C7 0404 PCR Peripheral Control Register
0x01C7 0408 SYN_MODE SYNC and Mode Set Register
0x01C7 040C HD_VD_WID HD and VD Signal Width
0x01C7 0410 PIX_LINES Number of Pixels in a Horizontal Line and Number of Lines in a Frame
0x01C7 0414 HORZ_INFO Horizontal Pixel Information
0x01C7 0418 VERT_START Vertical Line - Settings for the Starting Pixel
0x01C7 041C VERT_LINES Number of Vertical Lines
0x01C7 0420 CULLING Culling Information in Horizontal and Vertical Directions
0x01C7 0424 HSIZE_OFF Horizontal Size
0x01C7 0428 SDOFST SDRAM/DDRAM Line Offset
0x01C7 042C SDR_ADDR SDRAM Address
0x01C7 0430 CLAMP Optical Black Clamping Settings
0x01C7 0434 DCSUB DC Clamp
0x01C7 0438 COLPTN CCD Color Pattern
0x01C7 043C BLKCMP Black Compensation
0x01C7 0440 - Reserved
0x01C7 0444 - Reserved
Peripheral Information and Electrical Specifications212 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.10.1.2 Preview Engine
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-30. CCDC Register Descriptions (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C7 0448 VDINT VD Interrupt Timing
0x01C7 044C ALAW A-Law Setting
0x01C7 0450 REC656IF REC656 Interface
0x01C7 0454 CCDCFG CCD Configuration
0x01C7 0458 FMTCFG Data Reformatter/Video Port Configuration
0x01C7 045C FMT_HORZ Data Reformatter/Video Input Interface Horizontal Information
0x01C7 0460 FMT_VERT Data Reformatter/Video Input Interface Vertical Information
0x01C7 0464 FMT_ADDR0 Address Pointer 0 Setup
0x01C7 0468 FMT_ADDR1 Address Pointer 1 Setup
0x01C7 046C FMT_ADDR2 Address Pointer 2 Setup
0x01C7 0470 FMT_ADDR3 Address Pointer 3 Setup
0x01C7 0474 FMT_ADDR4 Address Pointer 4 Setup
0x01C7 0478 FMT_ADDR5 Address Pointer 5 Setup
0x01C7 047C FMT_ADDR6 Address Pointer 6 Setup
0x01C7 0480 FMT_ADDR7 Address Pointer 7 Setup
0x01C7 0484 PRGEVEN_0 Program Entries 0-7 for Even Line
0x01C7 0488 RRGEVEN_1 Program Entries 8-15 for Even Line
0x01C7 048C PRGGODD_0 Program Entries 0-7 for Odd Line
0x01C7 0490 PRGGODD_1 Program Entries 8-15 for Odd Line
0x01C7 0494 VP_OUT Video Port Output Settings
The preview engine transforms raw unprocessed image/video data from a sensor (CMOS or CCD) intoYCbCr 4:2:2 data. The output of the preview engine is used for both video compression and externaldisplay devices such as a NTSC/PAL analog encoder or a digital LCD. The following features aresupported by the preview engine.Accepts conventional Bayer pattern formats.Input image/video data from either the CCD/CMOS controller or the DDR2 memory.Output width up to 1280 pixels wide.Automatic/mandatory cropping of pixels/lines when edge processing is performed. If all thecorresponding modules are enabled, a total of 14 pixels per line (7 left most and 7 right most) and 8lines (4 top most and 4 bottom most) will not be output.Simple horizontal averaging (by factors of 2, 4, or 8) to handle input widths that are greater than 1280(plus the cropped number) pixels wide.Dark frame capture to DDR2.Dark frame subtraction for every input raw data frame, fetched from DDR2, pixel-by-pixel to improvevideo quality.Lens shading compensation. Each input pixel is multiplied with a corresponding 8-bit gain value andthe result is right shifted by a programmable parameter (0-7 bits).A-law decompression to transform non-linear 8-bit data to 10-bit linear data. This feature allows data inDDR2 to be 8-bits, which saves 50% of the area if the input to the preview engine is from the DDR2.Horizontal median filter for reducing temperature induced noise in pixels.Programmable noise filter that operates on a 3x3 grid of the same color (effectively, this is a five linestorage requirement).
Digital gain and white balance (color separate gain for white balance).Programmable CFA interpolation that operates on a 5x5 grid.Conventional Bayer pattern RGB and complementary color sensors.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 213
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Support for an image that is downsampled by 2x in the horizontal direction (with and without phasecorrection). In this case, the image is 2/3 populated instead of the conventional 1/3 colors.Support for an image that is downsampled by 2x in both the horizontal and vertical direction. In thiscase, the image is fully populated instead of the conventional 1/3 colors.Programmable RGB-to-RGB blending matrix (9 coefficients for the 3x3 matrix).Fully programmable gamma correction (1024 entries for each color held in an on-chip RAM).Programmable color conversion (RGB to YUV) coefficients (9 coefficients for the 3x3 matrix).Luminance enhancement (non-linear) and chrominance suppression & offset.
The Preview Engine register memory mapping is shown in Table 6-31 .
Table 6-31. Preview Engine Register Descriptions
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C7 0800 PID Peripheral Revision and Class Information
0x01C7 0804 PCR Peripheral Control Register
0x01C7 0808 HORZ_INFO Horizontal Information/Setup
0x01C7 080C VERT_INFO Vertical Information/Setup
0x01C7 0810 RSDR_ADDR Read Address From SDRAM
0x01C7 0814 RADR_OFFSET Line Offset for the Read Data
0x01C7 0818 DSDR_ADDR Dark Frame Address From SDRAM
0x01C7 081C DRKF_OFFSET Line Offset for the Dark Frame Data
0x01C7 0820 WSDR_ADDR Write Address to the SDRAM
0x01C7 0824 WADD_OFFSET Line Offset for the Write Data
0x01C7 0828 AVE Input Formatter/Averager
0x01C7 082C HMED Horizontal Median Filter
0x01C7 0830 NF Noise Filter
0x01C7 0834 WB_DGAIN White Balance Digital Gain
0x01C7 0838 WBGAIN White Balance Coefficients
0x01C7 083C WBSEL White Balance Coefficients Selection
0x01C7 0840 CFA CFA Register
0x01C7 0844 BLKADJOFF Black Adjustment Offset
0x01C7 0848 RGB_MAT1 RGB2RGB Blending Matrix Coefficients
0x01C7 084C RGB_MAT2 RGB2RGB Blending Matrix Coefficients
0x01C7 0850 RGB_MAT3 RGB2RGB Blending Matrix Coefficients
0x01C7 0854 RGB_MAT4 RGB2RGB Blending Matrix Coefficients
0x01C7 0858 RGB_MAT5 RGB2RGB Blending Matrix Coefficients
0x01C7 085C RGB_OFF1 RGB2RGB Blending Matrix Offsets
0x01C7 0860 RGB_OFF2 RGB2RGB Blending Matrix Offsets
0x01C7 0864 CSC0 Color Space Conversion Coefficients
0x01C7 0868 CSC1 Color Space Conversion Coefficients
0x01C7 086C CSC2 Color Space Conversion Coefficients
0x01C7 0870 CSC_OFFSET Color Space Conversion Offsets
0x01C7 0874 CNT_BRT Contrast and Brightness Settings
0x01C7 0878 CSUP Chrominance Suppression Settings
0x01C7 087C SETUP_YC Maximum/Minimum Y and C Settings
0x01C7 0880 SET_TBL_ADDRESS Setup Table Addresses
0x01C7 0884 SET_TBL_DATA Setup Table Data
Peripheral Information and Electrical Specifications214 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.10.1.3 Resizer
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The resizer module can accept input image/video data from either the preview engine or DDR2. Theoutput of the resizer module is sent to DDR2. The following features are supported by the resizer module.An output width up to 1280 horizontal pixels.Input from external DDR2.Up to 4x upsampling (digital zoom).Bi-cubic interpolation (4-tap horizontal, 4-tap vertical) can be implemented with the programmable filtercoefficients.
8 phases of filter coefficients.Optional bi-linear interpolation for the chrominance components.Up to 1/4x downsampling4-tap horizontal and 4-tap vertical filter coefficients (with 8-phases) for 1x to 1/2x downsampling1/2x to 1/4x downsampling, for 7-tap mode with 4-phases.Resizing either YUV 4:2:2 packed data (16-bits) or color separate data (8-bit data within DDR) that iscontiguous.
Separate/independent resizing factor for the horizontal and vertical directions.Upsampling and downsampling ratios that are available are: 256/N, with N ranging from 64 to 1024.Programmable luminance sharpening after the horizontal resizing and before the vertical resizing step.
The Resizer register memory mapping is shown in Table 6-32 .
Table 6-32. Resizer Register Descriptions
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C7 0C00 PID Peripheral Revision and Class Information
0x01C7 0C04 PCR Peripheral Control Register
0x01C7 0C08 RSZ_CNT Resizer Control Bits
0x01C7 0C0C OUT_SIZE Output Width and Height After Resizing
0x01C7 0C10 IN_START Input Starting Information
0x01C7 0C14 IN_SIZE Input Width and Height Before Resizing
0x01C7 0C18 SDR_INADD Input SDRAM Address
0x01C7 0C1C SDR_INOFF SDRAM Offset for the Input Line
0x01C7 0C20 SDR_OUTADD Output SDRAM Address
0x01C7 0C24 SDR_OUTOFF SDRAM Offset for the Output Line
0x01C7 0C28 HFILT10 Horizontal Filter Coefficients 1 and 0
0x01C7 0C2C HFILT32 Horizontal Filter Coefficients 3 and 2
0x01C7 0C30 HFILT54 Horizontal Filter Coefficients 5 and 4
0x01C7 0C34 HFILT76 Horizontal Filter Coefficients 7 and 6
0x01C7 0C38 HFILT98 Horizontal Filter Coefficients 9 and 8
0x01C7 0C3C HFILT1110 Horizontal Filter Coefficients 11 and 10
0x01C7 0C40 HFILT1312 Horizontal Filter Coefficients 13 and 12
0x01C7 0C44 HFILT1514 Horizontal Filter Coefficients 15 and 14
0x01C7 0C48 HFILT1716 Horizontal Filter Coefficients 17 and 16
0x01C7 0C4C HFILT1918 Horizontal Filter Coefficients 19 and 18
0x01C7 0C50 HFILT2120 Horizontal Filter Coefficients 21 and 20
0x01C7 0C54 HFILT2322 Horizontal Filter Coefficients 23 and 22
0x01C7 0C58 HFILT2524 Horizontal Filter Coefficients 25 and 24
0x01C7 0C5C HFILT2726 Horizontal Filter Coefficients 27 and 26
0x01C7 0C60 HFILT2928 Horizontal Filter Coefficients 29 and 28
Submit Documentation Feedback Peripheral Information and Electrical Specifications 215
l TEXAS INSTRUMENTS
6.10.1.4 Hardware 3A (H3A)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-32. Resizer Register Descriptions (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C7 0C64 HFILT3130 Horizontal Filter Coefficients 31 and 30
0x01C7 0C68 VFILT10 Vertical Filter Coefficients 1 and 0
0x01C7 0C6C VFILT32 Vertical Filter Coefficients 3 and 2
0x01C7 0C70 VFILT54 Vertical Filter Coefficients 5 and 4
0x01C7 0C74 VFILT76 Vertical Filter Coefficients 7 and 6
0x01C7 0C78 VFILT98 Vertical Filter Coefficients 9 and 8
0x01C7 0C7C VFILT1110 Vertical Filter Coefficients 11 and 10
0x01C7 0C80 VFILT1312 Vertical Filter Coefficients 13 and 12
0x01C7 0C84 VFILT1514 Vertical Filter Coefficients 15 and 14
0x01C7 0C88 VFILT1716 Vertical Filter Coefficients 17 and 16
0x01C7 0C8C VFILT1918 Vertical Filter Coefficients 19 and 18
0x01C7 0C90 VFILT2120 Vertical Filter Coefficients 21 and 20
0x01C7 0C94 VFILT2322 Vertical Filter Coefficients 23 and 22
0x01C7 0C98 VFILT2524 Vertical Filter Coefficients 25 and 24
0x01C7 0C9C VFILT2726 Vertical Filter Coefficients 27 and 26
0x01C7 0CA0 VFILT2928 Vertical Filter Coefficients 29 and 28
0x01C7 0CA4 VFILT3130 Vertical Filter Coefficients 31 and 30
0x01C7 0CA8 YENH Luminance Enhancer
The Hardware 3A (H3A) module provides control loops for Auto Focus, Auto White Balance and AutoExposure. There are 2 main components of the H3A module:Auto Focus (AF) EngineAuto Exposure (AE) & Auto White Balance (AWB) Engine
The AF engine extracts and filters the red, green, and blue data from the input image/video data andprovides either the accumulation or peaks of the data in a specified region. The specified region is a twodimensional block of data and is referred to as a “paxel” for the case of AF.
The AE/AWB Engine accumulates the values and checks for saturated values in a sub sampling of thevideo data. In the case of the AE/AWB, the two-dimensional block of data is referred to as a “window”.The number, dimensions, and starting position of the AF paxels and the AE/AWB windows are separatelyprogrammable.
The H3A register memory mapping is shown in Table 6-33 .
Table 6-33. H3A Register Descriptions
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C7 1400 PID Peripheral Revision and Class Information
0x01C7 1404 PCR Peripheral Control Register
0x01C7 1408 AFPAX1 Setup for the AF Engine Paxel Configuration
0x01C7 140C AFPAX2 Setup for the AF Engine Paxel Configuration
0x01C7 1410 AFPAXSTART Start Position for AF Engine Paxels
0x01C7 1414 AFIIRSH Start Position for IIRSH
0x01C7 1418 AFBUFST SDRAM/DDRAM Start Address for AF Engine
0x01C7 141C AFCOEF010 IIR Filter Coefficient Data for SET 0
0x01C7 1420 AFCOEF032 IIR Filter Coefficient Data for SET 0
0x01C7 1424 AFCOEFF054 IIR Filter Coefficient Data for SET 0
0x01C7 1428 AFCOEFF076 IIR Filter Coefficient Data for SET 0
Peripheral Information and Electrical Specifications216 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.10.1.5 Histogram
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-33. H3A Register Descriptions (continued)
0x01C7 142C AFCOEFF098 IIR Filter Coefficient Data for SET 0
0x01C7 1430 AFCOEFF0010 IIR Filter Coefficient Data for SET 0
0x01C7 1434 AFCOEF110 IIR Filter Coefficient Data for SET 1
0x01C7 1438 AFCOEF132 IIR Filter Coefficient Data for SET 1
0x01C7 143C AFCOEFF154 IIR Filter Coefficient Data for SET 1
0x01C7 1440 AFCOEFF176 IIR Filter Coefficient Data for SET 1
0x01C7 1444 AFCOEFF198 IIR Filter Coefficient Data for SET 1
0x01C7 1448 AFCOEFF1010 IIR Filter Coefficient Data for SET 1
0x01C7 144C AEWWIN1 Configuration for AE/AWB Windows
0x01C7 1450 AEWINSTART Start Position for AE/AWB Windows
0x01C7 1454 AEWINBLK Start Position and Height for Black Line of AE/AWB Windows
0x01C7 1458 AEWSUBWIN Configuration for Subsample Data in AE/AWB Window
0x01C7 145C AEWBUFST SDRAM/DDRAM Start Address for AE/AWB Engine
6.10.1.4.1 Auto Focus (AF) Engine
The following features are supported by the Auto Focus (AF) Engine.Peak Mode in a Paxel (a Paxel is defined as a two dimensional block of pixels).Accumulate the maximum Focus Value of each line in a PaxelAccumulation/Sum Mode (instead of Peak mode).Accumulate Focus Value in a Paxel.Up to 36 Paxels in the horizontal direction and up to 128 Paxels in the vertical direction.Programmable width and height for the Paxel. All paxels in the frame will be of same size.Programmable red, green, and blue position within a 2x2 matrix.Separate horizontal start for paxel and filtering.Programmable vertical line increments within a paxel.Parallel IIR filters configured in a dual-biquad configuration with individual coefficients (2 filters with 11coefficients each). The filters are intended to compute the sharpness/peaks in the frame to focus on.
6.10.1.4.2 Auto Exposure (AE) and Auto White Balance (AWB) Engine
The following features are supported by the Auto Exposure (AE) and Auto White Balance (AWB) Engine.Accumulate clipped pixels along with all non-saturated pixels.Up to 36 horizontal windows.Up to 128 vertical windows.Programmable width and height for the windows. All windows in the frame will be of same size.Separate vertical start coordinate and height for a black row of paxels that is different than theremaining color paxels.Programmable Horizontal Sampling Points in a window.Programmable Vertical Sampling Points in a window.
The histogram module accepts raw image/video data and bins the pixels on a value (and color separate)basis. The value of the pixel itself is not stored, but each bin contains the number of pixels that are withinthe appropriate set range. The source of the raw data for the histogram is typically a CCD/CMOS sensor(via the CCDC module) or optionally from DDR2. The following features are supported by the histogrammodule.
Up to four regions/areas.Separate horizontal/vertical start and end position for each region.Pixels from overlapping regions are accumulated into the highest priority region. The priority is: region0
Submit Documentation Feedback Peripheral Information and Electrical Specifications 217
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
> region1 > region2 > region3.Interface to conventional Bayer pattern. Each region can accumulate either 3 or 4 colors.32, 64, 128, or 256 bins per color per region.32, 64, or 128 bins per color for 2 regions.32 or 64 bins per color for 3 or 4 regions.Automatic clear of histogram RAM after an ARM read.Saturation of the pixel count if the count exceeds the maximum value (each memory location is 20-bitwide).
Downshift ranging from 0 to 7 bits (maximum bin range 128).The last bin (highest range of values) will accumulate any value that is higher than the lower bound.
The Histogram register memory mapping is shown in Table 6-34 .
Table 6-34. Histogram Register Descriptions
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C7 1000 PID Peripheral Revision and Class Information Register
0x01C7 1004 PCR Peripheral Control Register
0x01C7 1008 HIST_CNT Histogram Control Bits Register
0x01C7 100C WB_GAIN White/Channel Balance Settings Register
0x01C7 1010 R0_HORZ Region 0 Horizontal Information Register
0x01C7 1014 R0_VERT Region 0 Vertical Information Register
0x01C7 1018 R1_HORZ Region 1 Horizontal Information Register
0x01C7 101C R1_VERT Region 1 Vertical Information Register
0x01C7 1020 R2_HORZ Region 2 Horizontal Information Register
0x01C7 1024 R2_VERT Region 2 Vertical Information Register
0x01C7 1028 R3_HORZ Region 3 Horizontal Information Register
0x01C7 102C R3_VERT Region 3 Vertical Information Register
0x01C7 1030 HIST_ADDR Histogram Address for Data to be Read Register
0x01C7 1034 HIST_DATA Histogram Data That is Read From the Memory Register
0x01C7 1038 RADD Read Address From DDR2 Memory Register
0x01C7 103C RADD_OFF Read Address Offset for Each Line in the DDR2 Memory Register
0x01C7 1040 H_V_INFO Horizontal/Vertical Information Register (Horizontal/Vertical Number ofPixels When Data is Read From DDR2 Memory Information Register)
Peripheral Information and Electrical Specifications218 Submit Documentation Feedback
‘5‘ TEXAS INSTRUMENTS
6.10.1.6 VPFE Electrical Data/Timing
PCLK
2
1
3
4
4
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-35. Timing Requirements for VPFE PCLK Master/Slave Mode
(1)
(see Figure 6-19 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
c(PCLK)
Cycle time, PCLK 10.204 or 13.33
(2)
ns
2 t
w(PCLKH)
Pulse duration, PCLK high 0.4P ns
3 t
w(PCLKL)
Pulse duration, PCLK low 0.4P ns
4 t
t(PCLK)
Transition time, PCLK 7 ns
(1) P = PCLK period in ns.(2) When PCLK sources the clock for both the VPFE and VPBE, the minimum cycle time of 13.33 ns (specified in Table 6-42 ,TimingRequirements for VPBE CLK Inputs for VPBE) must be met. When PCLK sources the clock for only the VPFE, a minimum cycle time of10.2 ns may be used.
Figure 6-19. VPFE PCLK Timing
Table 6-36. Timing Requirements for VPFE (CCD) Slave Mode
(1)
(see Figure 6-20 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
5 t
su(CCDV-PCLK)
Setup time, CCD valid before PCLK edge 4.5 ns
6 t
h(PCLK-CCDV)
Hold time, CCD valid after PCLK edge 1 ns
7 t
su(HDV-PCLK)
Setup time, HD valid before PCLK edge 4.5 ns
8 t
h(PCLK-HDV)
Hold time, HD valid after PCLK edge 1 ns
9 t
su(VDV-PCLK)
Setup time, VD valid before PCLK edge 4.5 ns
10 t
h(PCLK-VDV)
Hold time, VD valid after PCLK edge 1 ns
11 t
su(C_WEV-PCLK)
Setup time, C_WE valid before PCLK edge 4.5 ns
12 t
h(PCLK-C_WEV)
Hold time, C_WE valid after PCLK edge 1 ns
13 t
su(C_FIELDV-PCLK)
Setup time, C_FIELD valid before PCLK edge 4.5 ns
14 t
h(PCLK-C_FIELDV)
Hold time, C_FIELD valid after PCLK edge 1 ns
(1) The VPFE may be configured to operate in either positive or negative edge clocking mode. When in positive edge clocking mode therising edge of PCLK is referenced. When in negative edge clocking mode the falling edge of PCLK is referenced.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 219
‘5‘ TEXAS INSTRUMENTS
PCLK
(Positive Edge Clocking)
PCLK
(Negative Edge Clocking)
7, 9
HD/VD
CCD[15:0]
8, 10
11, 13
12, 14
5
6
C_WE/C_FIELD
PCLK
(Positive Edge Clocking)
15 16
23 24
CCD[15:0]
C_WE/C_FIELD
PCLK
(Positive Edge Clocking)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 6-20. VPFE (CCD) Slave Mode Input Data Timing
Table 6-37. Timing Requirements for VPFE (CCD) Master Mode
(1)
(see Figure 6-21 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
15 t
su(CCDV-PCLK)
Setup time, CCD valid before PCLK edge 4.5 ns
16 t
h(PCLK-CCDV)
Hold time, CCD valid after PCLK edge 1 ns
23 t
su(CWEV-PCLK)
Setup time, C_WE valid before PCLK edge 4.5 ns
24 t
h(PCLK-CWEV)
Hold time, C_WE valid after PCLK edge 1 ns
(1) The VPFE may be configured to operate in either positive or negative edge clocking mode. When in positive edge clocking mode therising edge of PCLK is referenced. When in negative edge clocking mode the falling edge of PCLK is referenced.
Figure 6-21. VPFE (CCD) Master Mode Input Data Timing
220 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS ’ \ / 7‘ / \ / \ / r744 EX x‘ >‘< x="" l="" ‘rh="">< x="" x="" x="" l="" l744="" q="" x="" x4="" x="">
PCLK
18
20
22
HD
VD
C_FIELD
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-38. Switching Characteristics Over Recommended Operating Conditions for VPFE (CCD) MasterMode
(1)
(see Figure 6-22 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
18 t
d(PCLK-HDV)
Delay time, PCLK edge to HD valid 2 9.5 ns
20 t
d(PCLK-VDV)
Delay time, PCLK edge to VD valid 2 9.5 ns
22 t
d(PCLK-C_FIELDV)
Delay time, PCLK edge to C_FIELD valid 2 9.5 ns
(1) The VPFE may be configured to operate in either positive or negative edge clocking mode. When in positive edge clocking mode therising edge of PCLK is referenced. When in negative edge clocking mode the falling edge of PCLK is referenced.
Figure 6-22. VPFE (CCD) Master Mode Control Output Data Timing
Submit Documentation Feedback Peripheral Information and Electrical Specifications 221
l TEXAS INSTRUMENTS
6.10.2 Video Processing Back-End (VPBE)
fsc-ntsc
35
= 27 MHz = 3.5795454545 MHz
264
æ ö
ç ÷
è ø
167
f = 27 MHz = 4.4332628318 MHz
sc- pal 1017
æ ö
ç ÷
è ø
6.10.2.1 On-Screen Display (OSD)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The Video Processing Back-End (VPBE) consists of the On-Screen Display (OSD) module, the VideoEncoder (VENC) including the Digital LCD (DLCD) and Analog (i.e., DAC) interfaces. The video encodergenerates analog video output. The DLCD controller generates digital RGB/YCbCr data output and timingsignals.
Note: If the DAC is not used, for proper device operation connect the DAC pins as described inTable 2-21 , DAC [Part of VPBE] Terminal Functions.
The VPBE register memory mapping is shown in Table 6-39 .
Table 6-39. VPBE Register Descriptions
Address Register Description
0x01C7 2780 PID Peripheral Revision and Class Information Register
0x01C7 2784 PCR Peripheral Control Register
To ensure NTSC and PAL compliant output video, the stability of the input clock source is very important.TI recommends a 27-MHz, 50-ppm crystal. Ceramic oscillators are not recommended. The NTSC/PALcolor sub-carrier frequency is derived from the 27-MHz clock; therefore, if the 27-MHz clock drifts, then thecolor sub-carrier frequency will drift as well. Assuming no 27-MHz frequency drift, the color sub-carrierfrequency is generated as follows:
To ensure the color sub-carrier frequency will not drift out of specification, the user must follow the crystalrequirements discussed in Section 6.6.1 , Clock Input Option 1—Crystal. Alternatively, if the VPBE inputclock is sourced from the VPBECLK or VPFE clock inputs, these clocks must have a frequency stability of±50 ppm to ensure NTSC and PAL compliant output video.
The major function of the OSD module is to gather and blend video data and display/bitmap data beforefeeding it to the Video Encoder (VENC) in YCbCr format. The video and display data is read from anexternal memory, typically DDR2. The OSD is programmed via control and parameter registers. Thefollowing are the primary features that are supported by the OSD.Simultaneous display of two video windows and two OSD windows (VIDWIN0/VIDWIN1 andOSDWIN0/OSDWIN1).
– Separate enable for each window
Programmable width, height, and base starting coordinates for each window
– External memory address and offset registers for each window
Support for x2 and x4 zoom in both the horizontal and vertical direction
OSDWIN1 can be used as an attribute window for OSDWIN0
– Attribute window blinking intervals
– Field/frame mode for the windows (interlaced/progressive)
Eight step blending process between the OSD and video windows
Transparency support for the OSD and video data (when a bitmap pixel is zero, there will be noblending for that corresponding video pixel)
Resize from VGA to NTSC/PAL (640x480 to 720x576) for both the OSD and video windows
Reads in YCbCr data in 4:2:2 format from external memory, with the capability for swapping theorder of the CbCr component in the 32-bit word (this is relevant to the two video windows)
Peripheral Information and Electrical Specifications222 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Support for a ping-pong buffer scheme that can be used for VIDWIN0 (allows for video data to beaccessed from two different locations in DDR2)
Each OSD window (either one, but not both at the same time) is capable of reading in RGB data(16-bit data with six bits for the green and five bits each for the red and blue colors) instead ofbitmap data in YCbCr format restricted to a maximum of 8-bits
The OSD bitmap data width is selectable between 1, 2, 4, or 8-bits.
Each OSD window supports 16 entries for the bitmap (to index into a 256 entry RAM/ROM CLUTtable).
Indirect support for 24-bit RGB input data (which will be transformed into 16-bit YCbCr videowindow data) via the wrapper interface in the VPBE.Support for a rectangular cursor window and a programmable background color selection.
Programmable color palette with the ability to select between a RAM/ROM table with support for256 colors.
The width, height, and color of the cursor is programmable.
The display priority is: Rectangular-Cursor > OSDWIN1 > OSDWIN0 > VIDWIN1 > VIDWIN0 >background colorSupport for attenuation of the YCbCr values for the REC601 standard.
The following restrictions exist in the OSD module.Both the OSD windows and VIDWIN1 should be fully contained inside VIDWIN0.When one of the OSD windows is set in RGB mode, it cannot overlap with VIDWIN1.The OSD cannot support more than 256 color entries in the CLUT RAM/ROM. Some applicationsrequire higher number of entries, and one workaround is to use VIDWIN1 as an overlay mimicking theOSD window. Another option is to use the RGB mode for one of the OSD windows which allows for atotal of 16-bits for the R, G, and B colors (64K colors).The OSD can only read YCbCr in 4:2:2 interleaved format for the video windows. Other formats, eithercolor separate storage or 4:4:4/4:2:0 interleaved data is not supported.If the vertical resize filter is enabled for either of the video windows, the maximum horizontal windowdimension cannot be greater than 720 currently.It is not possible to use both of the CLUT ROMs at the same time. However, one window can useRAM while another uses ROM.The 24-bit RGB input mode is only valid for one of the two video windows (programmable) and doesnot apply to the OSD windows.
The OSD register memory mapping is shown in Table 6-40 .
Table 6-40. OSD Register Descriptions
Address Register Description
0x01C7 2600 MODE OSD Mode Register
0x01C7 2604 VIDWINMD Video Window Mode Setup
0x01C7 2608 OSDWIN0MD OSD Window Mode Setup
0x01C7 260C OSDWIN1MD OSD Window 1 Mode Setup (when used as a second OSD window)
0x01C7 260C OSDATRMD OSD Attribute Window Mode Setup (when used as an attribute window)
0x01C7 2610 RECTCUR Rectangular Cursor Setup
0x01C7 2614 RSV0 Reserved
0x01C7 2618 VIDWIN0OFST Video Window 0 Offset
0x01C7 261C VIDWIN1OFST Video Window 1 Offset
0x01C7 2620 OSDWIN0OFST OSD Window 0 Offset
0x01C7 2624 OSDWIN1OFST OSD Window 1 Offset
0x01C7 2628 RSV1 Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 223
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-40. OSD Register Descriptions (continued)
0x01C7 262C VIDWIN0ADR Video Window 0 Address
0x01C7 2630 VIDWIN1ADR Video Window 1 Address
0x01C7 2634 RSV2 Reserved
0x01C7 2638 OSDWIN0ADR OSD Window 0 Address
0x01C7 263C OSDWIN1ADR OSD Window 1 Address
0x01C7 2640 BASEPX Base Pixel X
0x01C7 2644 BASEPY Base Pixel Y
0x01C7 2648 VIDWIN0XP Video Window 0 X-Position
0x01C7 264C VIDWIN0YP Video Window 0 Y-Position
0x01C7 2650 VIDWIN0XL Video Window 0 X-Size
0x01C7 2654 VIDWIN0YL Video Window 0 Y-Size
0x01C7 2658 VIDWIN1XP Video Window 1 X-Position
0x01C7 265C VIDWIN1YP Video Window 1 Y-Position
0x01C7 2660 VIDWIN1XL Video Window 1 X-Size
0x01C7 2664 VIDWIN1YL Video Window 1 Y-Size
0x01C7 2668 OSDWIN0XP OSD Bitmap Window 0 X-Position
0x01C7 266C OSDWIN0YP OSD Bitmap Window 0 Y-Position
0x01C7 2670 OSDWIN0XL OSD Bitmap Window 0 X-Size
0x01C7 2674 OSDWIN0YL OSD Bitmap Window 0 Y-Size
0x01C7 2678 OSDWIN1XP OSD Bitmap Window 1 X-Position
0x01C7 267C OSDWIN1YP OSD Bitmap Window 1 Y-Position
0x01C7 2680 OSDWIN1XL OSD Bitmap Window 1 X-Size
0x01C7 2684 OSDWIN1YL OSD Bitmap Window 1 Y-Size
0x01C7 2688 CURXP Rectangular Cursor Window X-Position
0x01C7 268C CURYP Rectangular Cursor Window Y-Position
0x01C7 2690 CURXL Rectangular Cursor Window X-Size
0x01C7 2694 CURYL Rectangular Cursor Window Y-Size
0x01C7 2698 RSV3 Reserved
0x01C7 269C RSV4 Reserved
0x01C7 26A0 W0BMP01 Window 0 Bitmap Value to Palette Map 0/1
0x01C7 26A4 W0BMP23 Window 0 Bitmap Value to Palette Map 2/3
0x01C7 26A8 W0BMP45 Window 0 Bitmap Value to Palette Map 4/5
0x01C7 26AC W0BMP67 Window 0 Bitmap Value to Palette Map 6/7
0x01C7 26B0 W0BMP89 Window 0 Bitmap Value to Palette Map 8/9
0x01C7 26B4 W0BMPAB Window 0 Bitmap Value to Palette Map A/B
0x01C7 26B8 W0BMPCD Window 0 Bitmap Value to Palette Map C/D
0x01C7 26BC W0BMPEF Window 0 Bitmap Value to Palette Map E/F
0x01C7 26C0 W1BMP01 Window 1 Bitmap Value to Palette Map 0/1
0x01C7 26C4 W1BMP23 Window 1 Bitmap Value to Palette Map 2/3
0x01C7 26C8 W1BMP45 Window 1 Bitmap Value to Palette Map 4/5
0x01C7 26CC W1BMP67 Window 1 Bitmap Value to Palette Map 6/7
0x01C7 26D0 W1BMP89 Window 1 Bitmap Value to Palette Map 8/9
0x01C7 26D4 W1BMPAB Window 1 Bitmap Value to Palette Map A/B
0x01C7 26D8 W1BMPCD Window 1 Bitmap Value to Palette Map C/D
0x01C7 26DC W1BMPEF Window 1 Bitmap Value to Palette Map E/F
0x01C7 26E0 - Reserved
0x01C7 26E4 RSV5 Reserved
0x01C7 26E8 MISCCTL Miscellaneous Control
Peripheral Information and Electrical Specifications224 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.10.2.2 Video Encoder (VENC)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-40. OSD Register Descriptions (continued)
0x01C7 26EC CLUTRAMYCB CLUT RAMYCB Setup
0x01C7 26F0 CLUTRAMCR CLUT RAM Setup
0x01C7 26F4 TRANSPVAL CLUT RAM Setup
0x01C7 26F8 RSV6 Reserved
0x01C7 26FC PPVWIN0ADR Ping-Pong Video Window 0 Address
Analog/DACs interface of the Video Encoder (VENC) supports the following features.Master Clock Input - 27MHz (x2 Upsampling)SDTV Support
– Composite NTSC-M, PAL-B/D/G/H/I
– S-Video (Y/C)
– Component YPbPr (SMPTE/EBU N10, Betacam, MII)
– RGB
– Non-Interlace
– CGMS/WSS
– Line 21 Closed Caption Data Encoding
– Chroma Low Pass Filter 1.5MHz/3MHz
– Programmable SC-H phaseHDTV Support
– Progressive Output (525p/625p)
– Component YPbPr
– RGB
– CGMS/WSS
4 10-bit Over-Sampling D/A ConvertersOptional 7.5% Pedestal16-235/0-255 Input Amplitude SelectableProgrammable Luma DelayMaster/Slave OperationInternal Color Bar Generation (100%/75%)
The Digital LCD Controller (DLCD) of the VENC supports the following features.Programmable DCLKVarious Output Formats
– YCbCr 16bit
– YCbCr 8bit
– ITU-R BT. 656
– Parallel RGB 24bitLow Pass Filter for Digital RGB OutputProgrammable Timing GeneratorMaster/Slave OperationInternal Color Bar Generation (100%/75%)
The VENC register memory mapping including the Digital LCD and DACs is shown in Table 6-41 .
Submit Documentation Feedback Peripheral Information and Electrical Specifications 225
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-41. VENC (Including Digital LCD and DACs) Register Descriptions
Address Register Description
0x01C7 2400 VMOD Video Mode
0x01C7 2404 VIDCTL Video Interface I/O Control
0x01C7 2408 VDPRO Video Data Processing
0x01C7 240C SYNCCTL Sync Control
0x01C7 2410 HSPLS Horizontal Sync Pulse Width
0x01C7 2414 VSPLS Vertical Sync Pulse Width
0x01C7 2418 HINT Horizontal Interval
0x01C7 241C HSTART Horizontal Valid Data Start Position
0x01C7 2420 HVALID Horizontal Data Valid Range
0x01C7 2424 VINT Vertical Interval
0x01C7 2428 VSTART Vertical Valid Data Start Position
0x01C7 242C VVALID Vertical Data Valid Range
0x01C7 2430 HSDLY Horizontal Sync Delay
0x01C7 2434 VSDLY Vertical Sync Delay
0x01C7 2438 YCCTL YCbCr Control
0x01C7 243C RGBCTL RGB Control
0x01C7 2440 RGBCLP RGB Level Clipping
0x01C7 2444 LINECTL Line ID Control
0x01C7 2448 CULLLINE Culling Line Control
0x01C7 244C LCDOUT LCD Output Signal Control
0x01C7 2450 BRTS Brightness Start Position Signal Control
0x01C7 2454 BRTW Brightness Width Signal Control
0x01C7 2458 ACCTL LCD_AC Signal Control
0x01C7 245C PWMP PWM Start Position Signal Control
0x01C7 2460 PWMW PWM Width Signal Control
0x01C7 2464 DCLKCTL DCLK Control
0x01C7 2468 DCLKPTN0 DCLK Pattern 0
0x01C7 246C DCLKPTN1 DCLK Pattern 1
0x01C7 2470 DCLKPTN2 DCLK Pattern 2
0x01C7 2474 DCLKPTN3 DCLK Pattern 3
0x01C7 2478 DCLKPTN0A DCLK Auxiliary Pattern 0
0x01C7 247C DCLKPTN1A DCLK Auxiliary Pattern 1
0x01C7 2480 DCLKPTN2A DCLK Auxiliary Pattern 2
0x01C7 2484 DCLKPTN3A DCLK Auxiliary Pattern 3
0x01C7 2488 DCLKHS Horizontal DCLK Mask Start
0x01C7 248C DCLKHSA Horizontal Auxiliary DCLK Mask Start
0x01C7 2490 DCLKHR Horizontal DCLK Mask Range
0x01C7 2494 DCLKVS Vertical DCLK Mask Start
0x01C7 2498 DCLKVR Vertical DCLK Mask Range
0x01C7 249C CAPCTL Caption Control
0x01C7 24A0 CAPDO Caption Data Odd Field
0x01C7 24A4 CAPDE Caption Data Even Field
0x01C7 24A8 ATR0 Video Attribute Data # 0
0x01C7 24AC ATR1 Video Attribute Data # 1
0x01C7 24B0 ATR2 Video Attribute Data # 2
Peripheral Information and Electrical Specifications226 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-41. VENC (Including Digital LCD and DACs) Register Descriptions (continued)
0x01C7 24B4
0x01C7 24B4
Reserved0x01C7 24B4
0x01C7 24B4
0x01C7 24B8 VSTAT Video Status
0x01C7 24BC
Reserved0x01C7 24C0
0x01C7 24C4 DACTST DAC Test
0x01C7 24C8 YCOLVL YOUT and COUT Levels
0x01C7 24CC SCPROG Sub-Carrier Programming
0x01C7 24D0
0x01C7 24D4 Reserved
0x01C7 24D8
0x01C7 24DC CVBS Composite Mode
0x01C7 24E0 CMPNT Component Mode
0x01C7 24E4 ETMG0 CVBS Timing Control 0
0x01C7 24E8 ETMG1 CVBS Timing Control 1
0x01C7 24EC ETMG2 Component Timing Control 0
0x01C7 24F0 ETMG3 Component Timing Control 1
0x01C7 24F4 DACSEL DAC Output Select
0x01C7 24F8
Reserved0x01C7 24FC
0x01C7 2500 ARGBX0 Analog RGB Matrix 0
0x01C7 2504 ARGBX1 Analog RGB Matrix 1
0x01C7 2508 ARGBX2 Analog RGB Matrix 2
0x01C7 250C ARGBX3 Analog RGB Matrix 3
0x01C7 2510 ARGBX4 Analog RGB Matrix 4
0x01C7 2514 DRGBX0 Digital RGB Matrix 0
0x01C7 2518 DRGBX1 Digital RGB Matrix 1
0x01C7 251C DRGBX2 Digital RGB Matrix 2
0x01C7 2520 DRGBX3 Digital RGB Matrix 3
0x01C7 2524 DRGBX4 Digital RGB Matrix 4
0x01C7 2528 VSTARTA Vertical Data Valid Start Position for Even Field
0x01C7 252C OSDCLK0 OSD Clock Control 0
0x01C7 2530 OSDCLK1 OSD Clock Control 1
0x01C7 2534 HVLDCL0 Horizontal Valid Culling Control 0
0x01C7 2538 HVLDCL1 Horizontal Valid Culling Control 1
0x01C7 253C OSDHADV OSD Horizontal Sync Advance
Submit Documentation Feedback Peripheral Information and Electrical Specifications 227
‘5‘ TEXAS INSTRUMENTS Jka
6.10.2.3 VPBE Electrical Data/Timing
1
PCLK
2
3
7
5
64
8
VPBECLK
4
8
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-42. Timing Requirements for VPBE CLK Inputs
(1) (2)
(see Figure 6-23 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
c(PCLK)
Cycle time, PCLK 13.33 ns
2 t
w(PCLKH)
Pulse duration, PCLK high 0.4P ns
3 t
w(PCLKL)
Pulse duration, PCLK low 0.4P ns
4 t
t(PCLK)
Transition time, PCLK 7 ns
5 t
c(VPBECLK)
Cycle time, VPBECLK 13.33 ns
6 t
w(VPBECLKH)
Pulse duration, VPBECLK high 0.4V ns
7 t
w(VPBECLKL)
Pulse duration, VPBECLK low 0.4V ns
8 t
t(VPBECLK)
Transition time, VPBECLK 7 ns
(1) P = PCLK period in ns.(2) V = VPBECLK period in ns.
Figure 6-23. VPBE PCLK and VPBECLK Timing
Peripheral Information and Electrical Specifications228 Submit Documentation Feedback
l TEXAS INSTRUMENTS A, VCTL : HSYNC and VSVNC
PCLK
(Positive Edge Clocking)
9
PCLK
(Negative Edge Clocking) 10
VCTL(A)
A. VCTL = HSYNC and VSYNC
VPBECLK
27 28
33 34 35 36
LCD_FIELD
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-43. Timing Requirements for VPBE Control Input With Respect to PCLK and VPBECLK
(1)
(seeFigure 6-24 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
9 t
su(VCTLV-PCLK)
Setup time, VCTL valid before PCLK edge 3 ns
10 t
h(PCLK-VCTLV)
Hold time, VCTL valid after PCLK edge 1 ns
27 t
su(VCTLV-VPBECLK)
Setup time, VCTL valid before VPBECLK rising edge 3 ns
28 t
h(VPBECLK-VCTLV)
Hold time, VCTL valid after VPBECLK rising edge 1 ns
33 t
su(FIELD-PCLK)
Setup time, LCD_FIELD valid before PCLK edge 5P
(2)
ns
34 t
h(PCLK-FIELD)
Hold time, LCD_FIELD valid after PCLK edge 5P
(2)
ns
35 t
su(FIELD-VPBECLK)
Setup time, LCD_FIELD valid before VPBECLK edge 5P
(2)
ns
36 t
h(VPBECLK-FIELD)
Hold time, LCD_FIELD valid after VPBECLK edge 5P
(2)
ns
(1) PCLK may be configured to operate in either positive or negative edge clocking mode. When in positive edge clocking mode, the risingedge of PCLK is referenced. When in negative edge clocking mode, the falling edge of PCLK is referenced.(2) P = 1/(VCLKIN clock frequency) in ns. VCLKIN is either PCLK or VPBECLK, whichever is used.
Figure 6-24. VPBE Input Timing With Respect to PCLK and VPBECLK
Submit Documentation Feedback Peripheral Information and Electrical Specifications 229
‘5‘ TEXAS INSTRUMENTS
PCLK
(Positive Edge Clocking)
13, 31
PCLK
(Negative Edge Clocking)
11, 29
VCTL(A)
A. VCTL = HSYNC, VSYNC, LCD_FIELD, and LCD_OE
B. VDATA = COUT[7:0], YOUT[7:0], R[7:0], G[7:0], and B[7:0]
VDATA(B) 14, 32
12, 30
VPBECLK
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-44. Switching Characteristics Over Recommended Operating Conditions for VPBE Control andData Output With Respect to PCLK and VPBECLK
(1)
(see Figure 6-25 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
11 t
d(PCLK-VCTLV)
Delay time, PCLK edge to VCTL valid 14 ns
12 t
d(PCLK-VCTLIV)
Delay time, PCLK edge to VCTL invalid 2.5 ns
13 t
d(PCLK-VDATAV)
Delay time, PCLK edge to VDATA valid 14 ns
14 t
d(PCLK-VDATAIV)
Delay time, PCLK edge to VDATA invalid 2.5 ns
29 t
d(VPBECLK-VCTLV)
Delay time, VPBECLK rising edge to VCTL valid 14 ns
30 t
d(VPBECLK-VCTLIV)
Delay time, VPBECLK rising edge to VCTL invalid 2.5 ns
31 t
d(VPBECLK-VDATAV)
Delay time, VPBECLK rising edge to VDATA valid 14 ns
32 t
d(VPBECLK-VDATAIV)
Delay time, VPBECLK rising edge to VDATA invalid 2.5 ns
(1) PCLK may be configured to operate in either positive or negative edge clocking mode. When in positive edge clocking mode, the risingedge of PCLK is referenced. When in negative edge clocking mode, the falling edge of PCLK is referenced.
Figure 6-25. VPBE Output Timing With Respect to PCLK and VPBECLK
230 Peripheral Information and Electrical Specifications Submit Documentation Feedback
‘5‘ TEXAS INSTRUMENTS
VCLK
(Positive Edge
Clocking)
VCLK
(Negative Edge
Clocking)
17
VCTL(B)
VDATA(C)
18 1922
21
23 24
25 26
VCLKIN(A)
A. VCLKIN = PCLK or VPBECLK
B. VCTL = HSYNC, VSYNC, LCD_FIELD, and LCD_OE
C. VDATA = COUT[7:0], YOUT[7:0], R[7:0], G[7:0], and B[7:0]
20
20
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-45. Switching Characteristics Over Recommended Operating Conditions for VPBE Control andData Output With Respect to VCLK
(1) (2) (3)
(see Figure 6-26 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
17 t
c(VCLK)
Cycle time, VCLK 13.33 160 ns
18 t
w(VCLKH)
Pulse duration, VCLK high 0.4C ns
19 t
w(VCLKL)
Pulse duration, VCLK low 0.4C ns
20 t
t(VCLK)
Transition time, VCLK 7 ns
21 t
d(VCLKINH-VCLKH)
Delay time, VCLKIN high to VCLK high 1 9 ns
22 t
d(VCLKINL-VCLKL)
Delay time, VCLKIN low to VCLK low 1 9 ns
23 t
d(VCLK-VCTLV)
Delay time, VCLK edge to VCTL valid 9 ns
24 t
d(VCLK-VCTLIV)
Delay time, VCLK edge to VCTL invalid 0.6 ns
25 t
d(VCLK-VDATAV)
Delay time, VCLK edge to VDATA valid 9 ns
26 t
d(VCLK-VDATAIV)
Delay time, VCLK edge to VDATA invalid 0.6 ns
(1) The VPBE may be configured to operate in either positive or negative edge clocking mode. When in positive edge clocking mode, therising edge of VCLK is referenced. When in negative edge clocking mode, the falling edge of VCLK is referenced.(2) VCLKIN = PCLK or VPBECLK(3) C = VCLK period in ns.
Figure 6-26. VPBE Control and Data Output Timing With Respect to VCLK
Submit Documentation Feedback Peripheral Information and Electrical Specifications 231
l TEXAS INSTRUMENTS
6.10.2.4 DAC Electrical Data/Timing
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-46. Switching Characteristics Over Recommended Operating Conditions for DAC StaticSpecifications
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX
DC Accuracy
-1.0 1.0 LSBIntegral Non-Linearity (INL)
-0.5 0.5 LSBDifferential Non-Linearity (DNL)
Analog Output
0.5 LSBOffset Error
5 %F
SGain Error
500 mV
PPFull-Scale Output Voltage R
LOAD
= 500 Ω
Output Capacitance 200 pF
Reference
0.475 0.5 0.525 VReference Voltage Range (V
REF
)
3.3 4.0 4.4 k ΩFull-Scale Current Adjust Resistor (RBIAS)
Table 6-47. Switching Characteristics Over Recommended Operating Conditions for DAC DynamicSpecifications
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER TEST CONDITIONS UNIT
MIN TYP MAX
Output Update Rate (F
CLK
) 27 60 MHz
Signal Bandwidth 6 MHz
F
CLK
= 27 MHz
60 dBF
OUT
= 2.0 MHzSFDR to Nyquist
F
CLK
= 60 MHz
60 dBF
OUT
= 2.0 MHz
F
CLK
= 27 MHz
60 dbF
OUT
= 2.0 MHzSFDR within Bandwidth
F
CLK
= 60 MHz
60 dBF
OUT
= 2.0 MHz
PSRR Over Temp vs Power Supply 50 dB
Peripheral Information and Electrical Specifications232 Submit Documentation Feedback
l TEXAS INSTRUMENTS WP
Low-PassFilter
=6.5MHz
~R =500
fc
LOAD Ω
DAC
75 Ω
75 Ω
IOUT Amplifier
Gain=5.6V/V
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The DM6437's analog video DAC outputs are designed to drive a 500- Ωload. Figure 6-27 describes atypical circuit that will permit connecting the analog video output from the DM6437 device to standard75- Ωimpedance video systems. Another solution is to use a Video Amplifier, such as the TexasInstruments' OPA361, which provides a complete solution to the typical output circuit shown inFigure 6-27 .
Figure 6-27. Typical Output Circuit for NTSC/PAL Video From DACs
Submit Documentation Feedback Peripheral Information and Electrical Specifications 233
l TEXAS INSTRUMENTS
6.11 Universal Asynchronous Receiver/Transmitter (UART)
6.11.1 UART Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
DM6437 has 2 UART peripherals. Each UART has the following features:16-byte storage space for both the transmitter and receiver FIFOs1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMADMA signaling capability for both received and transmitted dataProgrammable auto-rts and auto-cts for autoflow controlFrequency pre-scale values from 1 to 65,535 to generate appropriate baud ratesPrioritized interruptsProgrammable serial data formats
5, 6, 7, or 8-bit characters
– Even, odd, or no parity bit generation and detection
1, 1.5, or 2 stop bit generationFalse start bit detectionLine break generation and detectionInternal diagnostic capabilities
– Loopback controls for communications link fault isolation
– Break, parity, overrun, and framing error simulationModem control functions (CTS, RTS) on UART0 only.
The UART0/1 registers are listed in Table 6-48 and Table 6-49 .
Table 6-48. UART0 Register Descriptions
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C2 0000 RBR UART0 Receiver Buffer Register (Read Only)
0x01C2 0000 THR UART0 Transmitter Holding Register (Write Only)
0x01C2 0004 IER UART0 Interrupt Enable Register
0x01C2 0008 IIR UART0 Interrupt Identification Register (Read Only)
0x01C2 0008 FCR UART0 FIFO Control Register (Write Only)
0x01C2 000C LCR UART0 Line Control Register
0x01C2 0010 MCR UART0 Modem Control Register
0x01C2 0014 LSR UART0 Line Status Register
0x01C2 0018 - Reserved
0x01C2 001C - Reserved
0x01C2 0020 DLL UART0 Divisor Latch (LSB)
0x01C2 0024 DLH UART0 Divisor Latch (MSB)
0x01C2 0028 PID1 Peripheral Identification Register 1
0x01C2 002C PID2 Peripheral Identification Register 2
0x01C2 0030 PWREMU_MGMT UART0 Power and Emulation Management Register
0x01C2 0034 - 0x01C2 03FF - Reserved
Table 6-49. UART1 Register Descriptions
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C2 0400 RBR UART1 Receiver Buffer Register (Read Only)
0x01C2 0400 THR UART1 Transmitter Holding Register (Write Only)
0x01C2 0404 IER UART1 Interrupt Enable Register
Peripheral Information and Electrical Specifications234 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-49. UART1 Register Descriptions (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C2 0408 IIR UART1 Interrupt Identification Register (Read Only)
0x01C2 0408 FCR UART1 FIFO Control Register (Write Only)
0x01C2 040C LCR UART1 Line Control Register
0x01C2 0410 MCR UART1 Modem Control Register
0x01C2 0414 LSR UART1 Line Status Register
0x01C2 0418 - Reserved
0x01C2 041C - Reserved
0x01C2 0420 DLL UART1 Divisor Latch (LSB)
0x01C2 0424 DLH UART1 Divisor Latch (MSB)
0x01C2 0428 PID1 Peripheral Identification Register 1
0x01C2 042C PID2 Peripheral Identification Register 2
0x01C2 0430 PWREMU_MGMT UART1 Power and Emulation Management Register
0x01C2 0434 - 0x01C2 07FF - Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 235
l TEXAS INSTRUMENTS 11H Data Bits
6.11.2 UART Electrical Data/Timing
3
2
Start
Bit
DataBits
UTXDx
5
DataBits
Bit
Start
4
URXDx
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-50. Timing Requirements for UARTx Receive
(1)
(see Figure 6-28 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
4 t
w(URXDB)
Pulse duration, receive data bit (URXDx) [15/30/100 pF] 0.96U 1.05U ns
5 t
w(URXSB)
Pulse duration, receive start bit [15/30/100 pF] 0.96U 1.05U ns
(1) U = UART baud time = 1/programmed baud rate.
Table 6-51. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit
(1)
(see Figure 6-28 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
1 f
(baud)
Maximum programmable baud rate 128 kHz
2 t
w(UTXDB)
Pulse duration, transmit data bit (UTXDx) [15/30/100 pF] U - 2 U + 2 ns
3 t
w(UTXSB)
Pulse duration, transmit start bit [15/30/100 pF] U - 2 U + 2 ns
(1) U = UART baud time = 1/programmed baud rate.
Figure 6-28. UART Transmit/Receive Timing
236 Peripheral Information and Electrical Specifications Submit Documentation Feedback
‘5‘ TEXAS INSTRUMENTS SE
6.12 Inter-Integrated Circuit (I2C)
Clock
Prescale
ICPSC
PeripheralClock
(DSP/18)
ICCLKH
Generator
BitClock
ICCLKL
Noise
Filter
SCL
ICXSR
ICDXR
Transmit
Transmit
Shift
Transmit
Buffer
ICDRR
Shift
ICRSR
Receive
Buffer
Receive
Receive
Filter
SDA
I2CData Noise
ICOAR
ICSAR Slave
Address
Control
Address
Own
ICMDR
ICCNT
Mode
Data
Count
Vector
Interrupt
Interrupt
Status
ICIVR
ICSTR
Mask/Status
Interrupt
ICIMR
Interrupt/DMA
I2CModule
I2CClock
Shadingdenotescontrol/statusregisters.
ICEMDR Extended
Mode
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The inter-integrated circuit (I2C) module provides an interface between DM6437 and other devicescompliant with Philips Semiconductors Inter-IC bus (I
2
C-bus™) specification version 2.1. Externalcomponents attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the DSPthrough the I2C module. The I2C port does not support CBUS compatible devices.
The I2C port supports:Compatible with Philips I2C Specification Revision 2.1 (January 2000)Fast Mode up to 400 Kbps (no fail-safe I/O buffers)Noise Filter to Remove Noise 50 ns or lessSeven- and Ten-Bit Device Addressing ModesMaster (Transmit/Receive) and Slave (Transmit/Receive) FunctionalityEvents: DMA, Interrupt, or PollingSlew-Rate Limited Open-Drain Output Buffers
Figure 6-29. I2C Module Block Diagram
For more detailed information on the I2C peripheral, see Section 2.9 ,Documentation Support section ofthis document for the TMS320DM643x DMP Peripherals Overview Reference Guide (literature numberSPRU983).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 237
l TEXAS INSTRUMENTS
6.12.1 I2C Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-52. I2C Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x1C2 1000 ICOAR I2C Own Address Register
0x1C2 1004 ICIMR I2C Interrupt Mask Register
0x1C2 1008 ICSTR I2C Interrupt Status Register
0x1C2 100C ICCLKL I2C Clock Divider Low Register
0x1C2 1010 ICCLKH I2C Clock Divider High Register
0x1C2 1014 ICCNT I2C Data Count Register
0x1C2 1018 ICDRR I2C Data Receive Register
0x1C2 101C ICSAR I2C Slave Address Register
0x1C2 1020 ICDXR I2C Data Transmit Register
0x1C2 1024 ICMDR I2C Mode Register
0x1C2 1028 ICIVR I2C Interrupt Vector Register
0x1C2 102C ICEMDR I2C Extended Mode Register
0x1C2 1030 ICPSC I2C Prescaler Register
0x1C2 1034 ICPID1 I2C Peripheral Identification Register 1
0x1C2 1038 ICPID2 I2C Peripheral Identification Register 2
Peripheral Information and Electrical Specifications238 Submit Documentation Feedback
‘5‘ TEXAS INSTRUMENTS 4w
6.12.2 I2C Electrical Data/Timing
6.12.2.1 Inter-Integrated Circuits (I2C) Timing
10
8
4
3
7
12
5
614
2
3
13
Stop Start Repeated
Start
Stop
SDA
SCL
1
11 9
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-53. Timing Requirements for I2C Timings
(1)
(see Figure 6-30 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4
NO. STANDARD UNITFAST MODEMODE
MIN MAX MIN MAX
1 t
c(SCL)
Cycle time, SCL 10 2.5 µs
Setup time, SCL high before SDA low (for a repeated START2 t
su(SCLH-SDAL)
4.7 0.6 µscondition)
Hold time, SCL low after SDA low (for a START and a repeated3 t
h(SCLL-SDAL)
4 0.6 µsSTART condition)
4 t
w(SCLL)
Pulse duration, SCL low 4.7 1.3 µs
5 t
w(SCLH)
Pulse duration, SCL high 4 0.6 µs
6 t
su(SDAV-SCLH)
Setup time, SDA valid before SCL high 250 100
(2)
ns
7 t
h(SDA-SCLL)
Hold time, SDA valid after SCL low 0
(3)
0
(3)
0.9
(4)
µs
Pulse duration, SDA high between STOP and START8 t
w(SDAH)
4.7 1.3 µsconditions
9 t
r(SDA)
Rise time, SDA 1000 20 + 0.1C
b
(5)
300 ns
10 t
r(SCL)
Rise time, SCL 1000 20 + 0.1C
b
(5)
300 ns
11 t
f(SDA)
Fall time, SDA 300 20 + 0.1C
b
(5)
300 ns
12 t
f(SCL)
Fall time, SCL 300 20 + 0.1C
b
(5)
300 ns
13 t
su(SCLH-SDAH)
Setup time, SCL high before SDA high (for STOP condition) 4 0.6 µs
14 t
w(SP)
Pulse duration, spike (must be suppressed) 0 50 ns
15 C
b
(5)
Capacitive load for each bus line 400 400 pF
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powereddown.
(2) A Fast-mode I
2
C-bus™ device can be used in a Standard-mode I
2
C-bus system, but the requirement t
su(SDA-SCLH)
250 ns must then bemet. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretchthe LOW period of the SCL signal, it must output the next data bit to the SDA line t
r
max + t
su(SDA-SCLH)
= 1000 + 250 = 1250 ns(according to the Standard-mode I
2
C-Bus Specification) before the SCL line is released.(3) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V
IHmin
of the SCL signal) to bridge theundefined region of the falling edge of SCL.(4) The maximum t
h(SDA-SCLL)
has only to be met if the device does not stretch the low period [t
w(SCLL)
] of the SCL signal.(5) C
b
= total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.
Figure 6-30. I2C Receive Timings
Submit Documentation Feedback Peripheral Information and Electrical Specifications 239
{L} TEXAS INSTRUMENTS LT 4x 4‘
25
23
19
18
22
27
20
21
17
18
28
Stop Start Repeated
Start
Stop
SDA
SCL
16
26 24
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-54. Switching Characteristics for I2C Timings
(1)
(see Figure 6-31 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4
NO. PARAMETER STANDARD UNITFAST MODEMODE
MIN MAX MIN MAX
16 t
c(SCL)
Cycle time, SCL 10 2.5 µs
Delay time, SCL high to SDA low (for a repeated START17 t
d(SCLH-SDAL)
4.7 0.6 µscondition)
Delay time, SDA low to SCL low (for a START and a repeated18 t
d(SDAL-SCLL)
4 0.6 µsSTART condition)
19 t
w(SCLL)
Pulse duration, SCL low 4.7 1.3 µs
20 t
w(SCLH)
Pulse duration, SCL high 4 0.6 µs
21 t
d(SDAV-SCLH)
Delay time, SDA valid to SCL high 250 100 ns
22 t
v(SCLL-SDAV)
Valid time, SDA valid after SCL low 0 0 0.9 µs
Pulse duration, SDA high between STOP and START23 t
w(SDAH)
4.7 1.3 µsconditions
24 t
r(SDA)
Rise time, SDA 1000 20 + 0.1C
b
(1)
300 ns
25 t
r(SCL)
Rise time, SCL 1000 20 + 0.1C
b
(1)
300 ns
26 t
f(SDA)
Fall time, SDA 300 20 + 0.1C
b
(1)
300 ns
27 t
f(SCL)
Fall time, SCL 300 20 + 0.1C
b
(1)
300 ns
28 t
d(SCLH-SDAH)
Delay time, SCL high to SDA high (for STOP condition) 4 0.6 µs
29 C
p
Capacitance for each I2C pin 10 10 pF
(1) C
b
= total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.
Figure 6-31. I2C Transmit Timings
240 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU998
6.13 Host-Port Interface (HPI) Peripheral
6.13.1 HPI Device-Specific Information
6.13.2 HPI Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The DM6437 device includes a user-configurable 16-bit Host-port interface (HPI16).
Software handshaking via the HRDY bit of the Host Port Control Register (HPIC) is not supported on theDM6437.
The DM6437 HPI does not support the HAS feature. For proper device operation, the HAS pin must bepulled up via an external resistor.
Table 6-55. HPI Control Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
01C6 7800 PID Peripheral Identification Register
The CPU has read/write01C6 7804 PWREMU_MGMT HPI power and emulation management register access to thePWREMU_MGMT register.
01C6 7808 - 01C6 7824 - Reserved
01C6 7828 - Reserved
01C6 782C - Reserved
The Host and the CPU both01C6 7830 HPIC HPI control register have read/write access to theHPIC register.
HPIA HPI address register
The Host has read/write01C6 7834
(HPIAW)
(1)
(Write)
access to the HPIA registers.The CPU has only readHPIA HPI address register01C6 7838
access to the HPIA registers.(HPIAR)
(1)
(Read)
01C6 780C - 01C6 7FFF - Reserved
(1) There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such thatHPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from theperspective of the Host. The CPU can access HPIAW and HPIAR independently. For more details about the HPIA registers and theirmodes, see the TMS320DM643x DMP Host Port Interface (HPI) User's Guide (literature number SPRU998 ).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 241
l TEXAS INSTRUMENTS
6.13.3 HPI Electrical Data/Timing
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-56. Timing Requirements for Host-Port Interface Cycles
(1) (2)
(see Figure 6-32 and Figure 6-33 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
su(SELV-HSTBL)
Setup time, select signals
(3)
valid before HSTROBE low 5 ns
2 t
h(HSTBL-SELV)
Hold time, select signals
(3)
valid after HSTROBE low 2 ns
3 t
w(HSTBL)
Pulse duration, HSTROBE active low 15 ns
4 t
w(HSTBH)
Pulse duration, HSTROBE inactive high between consecutive accesses 2M ns
11 t
su(HDV-HSTBH)
Setup time, host data valid before HSTROBE high 5 ns
12 t
h(HSTBH-HDV)
Hold time, host data valid after HSTROBE high 0 ns
Hold time, HSTROBE high after HRDY low. HSTROBE should not be13 t
h(HRDYL-HSTBL)
inactivated until HRDY is active (low); otherwise, HPI writes will not 0 nscomplete properly.
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT( HDS1 XOR HDS2)] OR HCS.(2) M = SYSCLK3 period = (CPU clock frequency)/6 in ns. For example, when running parts at 600 MHz, use M = 10 ns.(3) Select signals include: HCNTL[1:0], HR/ W and HHWIL.
Peripheral Information and Electrical Specifications242 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-57. Switching Characteristics for Host-Port Interface Cycles
(1) (2) (3)
(see Figure 6-32 and Figure 6-33 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
For HPI Write, HRDY can go high ( notready) for these HPI Write conditions;otherwise, HRDY stays low ( ready):Case 1: Back-to-back HPIA writes (canbe either first or second half-word)Case 2: HPIA write following aPREFETCH command (can be eitherfirst or second half-word)Case 3: HPID write when FIFO is fullor flushing (can be either first orsecond half-word)
Case 4: HPIA write and Write FIFO notempty
For HPI Read, HRDY can go high ( notready) for these HPI Read conditions:Case 1: HPID read (withDelay time, HSTROBE low to5 t
d(HSTBL-HRDYV)
12 nsauto-increment) and data not in ReadHRDY valid
FIFO (can only happen to firsthalf-word of HPID access)Case 2: First half-word access of HPIDRead without auto-increment
For HPI Read, HRDY stays low ( ready)for these HPI Read conditions:Case 1: HPID read with auto-incrementand data is already in Read FIFO(applies to either half-word of HPIDaccess)
Case 2: HPID read withoutauto-increment and data is already inRead FIFO (always applies to secondhalf-word of HPID access)Case 3: HPIC or HPIA read (applies toeither half-word access)
6 t
en(HSTBL-HD)
Enable time, HD driven from HSTROBE low 2 ns
7 t
d(HRDYL-HDV)
Delay time, HRDY low to HD valid 0 ns
8 t
oh(HSTBH-HDV)
Output hold time, HD valid after HSTROBE high 1.5 ns
14 t
dis(HSTBH-HDV)
Disable time, HD high-impedance from HSTROBE high 12 ns
For HPI Read. Applies to conditionswhere data is already residing inHPID/FIFO:
Case 1: HPIC or HPIA readDelay time, HSTROBE low to15 t
d(HSTBL-HDV)
Case 2: First half-word of HPID read 15 nsHD valid
with auto-increment and data isalready in Read FIFOCase 3: Second half-word of HPIDread with or without auto-increment
For HPI Write, HRDY can go high ( notready) for these HPI Write conditions;otherwise, HRDY stays low ( ready):Case 1: HPID write when Write FIFO isDelay time, HSTROBE high to full (can happen to either half-word)18 t
d(HSTBH-HRDYV)
12 nsHRDY valid Case 2: HPIA write (can happen toeither half-word)
Case 3: HPID write withoutauto-increment (only happens tosecond half-word)
(1) M = SYSCLK3 period = (CPU clock frequency)/6 in ns. For example, when running parts at 600 MHz, use M = 10 ns.(2) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT( HDS1 XOR HDS2)] OR HCS.(3) By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 243
l TEXAS INSTRUMENTS * —\ /—\ /— H w J44 ‘ 4—H ‘ "cum: -‘<::>‘_‘<::>‘— \ ‘ ‘ +49% Ham ‘ — 44—4 ‘ 1 Ht?» ‘47 4n f 4‘ mum \‘ f‘ \‘ 1‘ \ \ \ H 44 154—» ‘ 1 H” 1 1 Alf—H HD[I5:0] 1 \ a w \ H \W \ \ \ (output) ‘ , j—pri lslHall-Word \ 7* HFDWED / \
HCS
HAS(D)
HCNTL[1:0]
HR/W
HHWIL
HSTROBE(A)(C)
HD[15:0]
(output)
HRDY(B)
12
12
12
5
6
3
43
12
12
12
8
14
15
14
8
71st Half-Word 2nd Half-Word
6
13
15
A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with
auto-incrementing) and the state of the FIFO, transitions on HRDY may or may not occur.
For more detailed information on the HPI peripheral, see the TMS320DM643x Host Port Interface (HPI) Users Guide
(literature number SPRU998).
C. HCS reflects typical HCS behavior when HSTROBE assertion is caused by HDS1 or HDS2. HCS timing requirements are
reflected by parameters for HSTROBE.
DFor proper HPI operation, HAS must be pulled up via an external resistor.
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 6-32. HPI16 Read Timing ( HAS Not Used, Tied High)
244 Peripheral Information and Electrical Specifications Submit Documentation Feedback
{L} TEXAS INSTRUMENTS
HAS(D)
HCNTL[1:0]
HR/W
HHWIL
HSTROBE(A)(C)
HCS
HD[15:0]
(input)
HRDY(B)
212
1
12
2
1
2
1
12
343
11 12
18
13
5
185
11 12
13
2nd Half-Word1st Half-Word
A. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the
state of the FIFO, transitions on HRDY may or may not occur.
For more detailed information on the HPI peripheral, see the TMS320DM643x Host Port Interface (HPI) Users Guide (literature number
SPRU998).
C. HCS reflects typical HCS behavior when HSTROBE assertion is caused by HDS1 or HDS2. HCS timing requirements are reflected by
parameters for HSTROBE.
DFor proper HPI operation, HAS must be pulled up via an external resistor.
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 6-33. HPI16 Write Timing ( HAS Not Used, Tied High)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 245
l TEXAS INSTRUMENTS SPRU943
6.14 Multichannel Buffered Serial Port (McBSP)
6.14.1 McBSP Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The McBSP provides these functions:Full-duplex communicationDouble-buffered data registers, which allow a continuous data streamIndependent framing and clocking for receive and transmitDirect interface to industry-standard codecs, analog interface chips (AICs), and other seriallyconnected analog-to-digital (A/D) and digital-to-analog (D/A) devicesExternal shift clock or an internal, programmable frequency shift clock for data transfer
If internal clock source is used, the CLKGDV field of the Sample Rate Generator Register (SRGR) mustalways be set to a value of 1 or greater.
For more detailed information on the McBSP peripheral, see the TMS320DM643x DMP MultichannelBuffered Serial Port (McBSP) User's Guide (literature number SPRU943 ).
Table 6-58. McBSP 0 Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
The CPU and EDMA3controller can only read01D0 0000 DRR0 McBSP0 Data Receive Register
this register; they cannotwrite to it.
01D0 0004 DXR0 McBSP0 Data Transmit Register
01D0 0008 SPCR0 McBSP0 Serial Port Control Register
01D0 000C RCR0 McBSP0 Receive Control Register
01D0 0010 XCR0 McBSP0 Transmit Control Register
01D0 0014 SRGR0 McBSP0 Sample Rate Generator register
01D0 0018 MCR0 McBSP0 Multichannel Control Register
McBSP0 Enhanced Receive Channel Enable Register01D0 001C RCERE00
0 Partition A/B
McBSP0 Enhanced Transmit Channel Enable Register01D0 0020 XCERE00
0 Partition A/B
01D0 0024 PCR0 McBSP0 Pin Control Register
McBSP0 Enhanced Receive Channel Enable Register01D0 0028 RCERE10
1 Partition C/D
McBSP0 Enhanced Transmit Channel Enable Register01D0 002C XCERE10
1 Partition C/D
McBSP0 Enhanced Receive Channel Enable Register01D0 0030 RCERE20
2 Partition E/F
McBSP0 Enhanced Transmit Channel Enable Register01D0 0034 XCERE20
2 Partition E/F
McBSP0 Enhanced Receive Channel Enable Register01D0 0038 RCERE30
3 Partition G/H
McBSP0 Enhanced Transmit Channel Enable Register01D0003C XCERE30
3 Partition G/H
01D0 0040 - 01D0 07FF - Reserved
Table 6-59. McBSP 1 Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
The CPU and EDMAcontroller can only read01D0 0800 DRR1 McBSP1 Data Receive Register
this register; they cannotwrite to it.
Peripheral Information and Electrical Specifications246 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-59. McBSP 1 Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
01D0 0804 DXR1 McBSP1 Data Transmit Register
01D0 0808 SPCR1 McBSP1 serial port control register
01D0 080C RCR1 McBSP1 Receive Control Register
01D0 0810 XCR1 McBSP1 Transmit Control Register
01D0 0814 SRGR1 McBSP1 sample rate generator register
01D0 0818 MCR1 McBSP1 multichannel control register
McBSP1 Enhanced Receive Channel Enable Register01D0 081C RCERE01
0 Partition A/B
McBSP1 Enhanced Transmit Channel Enable Register01D0 0820 XCERE01
0 Partition A/B
01D0 0824 PCR1 McBSP1 Pin Control Register
McBSP1 Enhanced Receive Channel Enable Register01D0 0828 RCERE11
1 Partition C/D
McBSP1 Enhanced Transmit Channel Enable Register01D0 082C XCERE11
1 Partition C/D
McBSP1 Enhanced Receive Channel Enable Register01D0 0830 RCERE21
2 Partition E/F
McBSP1 Enhanced Transmit Channel Enable Register01D0 0834 XCERE21
2 Partition E/F
McBSP1 Enhanced Receive Channel Enable Register01D0 0838 RCERE31
3 Partition G/H
McBSP1 Enhanced Transmit Channel Enable Register01D0 083C XCERE31
3 Partition G/H
01D0 0840 - 01D0 0FFF - Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 247
l TEXAS INSTRUMENTS
6.14.2 McBSP Electrical Data/Timing
6.14.2.1 Multichannel Buffered Serial Port (McBSP) Timing
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-60. Timing Requirements for McBSP
(1)
(see Figure 6-34 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
2 t
c(CKRX)
Cycle time, CLKR/X CLKR/X ext 2P
(2) (3)
ns
3 t
w(CKRX)
Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext P - 1
(4)
ns
CLKR int 145 t
su(FRH-CKRL)
Setup time, external FSR high before CLKR low nsCLKR ext 4
CLKR int 66 t
h(CKRL-FRH)
Hold time, external FSR high after CLKR low nsCLKR ext 4
CLKR int 147 t
su(DRV-CKRL)
Setup time, DR valid before CLKR low nsCLKR ext 4
CLKR int 38 t
h(CKRL-DRV)
Hold time, DR valid after CLKR low nsCLKR ext 3.5
CLKX int 1410 t
su(FXH-CKXL)
Setup time, external FSX high before CLKX low nsCLKX ext 4
CLKX int 611 t
h(CKXL-FXH)
Hold time, external FSX high after CLKX low nsCLKX ext 3
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are alsoinverted.
(2) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clocksource. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMAlimitations and AC timing requirements.(4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Peripheral Information and Electrical Specifications248 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-61. Switching Characteristics Over Recommended Operating Conditions for McBSP
(1) (2)
(see Figure 6-34 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
Delay time, CLKS high to CLKR/X high for internal CLKR/X1 t
d(CKSH-CKRXH)
3 10 nsgenerated from CLKS input
2 t
c(CKRX)
Cycle time, CLKR/X CLKR/X int 2P
(3) (4) (5)
ns
3 t
w(CKRX)
Pulse duration, CLKR/X high or CLKR/X low CLKR/X int C - 2
(6)
C + 2
(6)
ns
4 t
d(CKRH-FRV)
Delay time, CLKR high to internal FSR valid CLKR int -4 5.5 ns
CLKX int -4 5.59 t
d(CKXH-FXV)
Delay time, CLKX high to internal FSX valid nsCLKX ext 2.5 14.5
CLKX int -5.5 7.5Disable time, DX high impedance following12 t
dis(CKXH-DXHZ)
nslast data bit from CLKX high
CLKX ext -2.1 16
CLKX int -4 + D1
(7)
5.5 + D2
(7)
13 t
d(CKXH-DXV)
Delay time, CLKX high to DX valid nsCLKX ext 2.5 + D1
(7)
14.5 + D2
(7)
Delay time, FSX high to DX valid FSX int -4
(8)
5
(8)
14 t
d(FXH-DXV)
nsONLY applies when in data
FSX ext 1
(8)
14.5
(8)delay 0 (XDATDLY = 00b) mode
(1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are alsoinverted.
(2) Minimum delay times also represent minimum output hold times.(3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle timesare based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.(4) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(5) Use whichever value is greater.(6) C = H or LS = sample rate generator input clock = P if CLKSM = 1 (P = SYSCLK3 period)S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is evenH = (CLKGDV + 1)/2 * S if CLKGDV is oddL = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is evenL = (CLKGDV + 1)/2 * S if CLKGDV is oddCLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).(7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.if DXENA = 0, then D1 = D2 = 0if DXENA = 1, then D1 = 6P, D2 = 12P(8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.if DXENA = 0, then D1 = D2 = 0if DXENA = 1, then D1 = 6P, D2 = 12P
Submit Documentation Feedback Peripheral Information and Electrical Specifications 249
{L} TEXAS INSTRUMENTS
Bit(n-1) (n-2) (n-3)
Bit 0 Bit(n-1) (n-2) (n-3)
14
12
11
10
9
3
3
2
8
7
6
5
4
4
3
1
32
CLKS
CLKR
FSR (int)
FSR (ext)
DR
CLKX
FSX (int)
FSX (ext)
FSX (XDATDLY=00b)
DX
13(A)
13(A)
2
1
CLKS
FSR external
CLKR/X (no need to resync)
CLKR/X (needs resync)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
A. Parameter No. 13 applies to the first data bit only when XDATDLY 0.
Figure 6-34. McBSP Timing
(B)
Table 6-62. Timing Requirements for FSR When GSYNC = 1 (see Figure 6-35 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
su(FRH-CKSH)
Setup time, FSR high before CLKS high 4 ns
2 t
h(CKSH-FRH)
Hold time, FSR high after CLKS high 4 ns
Figure 6-35. FSR Timing When GSYNC = 1
Peripheral Information and Electrical Specifications250 Submit Documentation Feedback
{L} TEXAS INSTRUMENTS
Bit 0 Bit(n-1) (n-2) (n-3) (n-4)
Bit 0 Bit(n-1) (n-2) (n-3) (n-4)
5
4
3
8
7
6
21
CLKX
FSX
DX
DR
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-63. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0
(1) (2)
(see Figure 6-36 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNITMASTER SLAVE
MIN MAX MIN MAX
4 t
su(DRV-CKXL)
Setup time, DR valid before CLKX low 14 2 - 3P ns
5 t
h(CKXL-DRV)
Hold time, DR valid after CLKX low 4 5 + 6P ns
(1) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(2) For all SPI Slave modes, the rate of the internal clock CLKG must be at least 8 times faster than that of the SPI data rate. User shouldprogram sample rate generator to achieve maximum CLKG by setting CLKSM = CLKGDV = 1.
Table 6-64. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPIMaster or Slave: CLKSTP = 10b, CLKXP = 0
(1) (2)
(see Figure 6-36 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNITMASTER
(3)
SLAVE
MIN MAX MIN MAX
1 t
h(CKXL-FXL)
Hold time, FSX low after CLKX low
(4)
T - 4 T + 5.5 ns
2 t
d(FXL-CKXH)
Delay time, FSX low to CLKX high
(5)
L - 4 L + 4 ns
3 t
d(CKXH-DXV)
Delay time, CLKX high to DX valid -4 5.5 3P + 2.8 5P + 17 ns
Disable time, DX high impedance following6 t
dis(CKXL-DXHZ)
L - 6 L + 7.5 nslast data bit from CLKX low
Disable time, DX high impedance following7 t
dis(FXH-DXHZ)
P + 3 3P + 17 nslast data bit from FSX high
8 t
d(FXL-DXV)
Delay time, FSX low to DX valid 2P + 1.8 4P + 17 ns
(1) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(2) For all SPI Slave modes, the rate of the internal clock CLKG must be at least 8 times faster than that of the SPI data rate. User shouldprogram sample rate generator to achieve maximum CLKG by setting CLKSM = CLKGDV = 1.(3) S = Sample rate generator input clock = 2P if CLKSM = 1 (P = SYSCLK3 period)S = Sample rate generator input clock = 2P_clks if CLKSM = 0 (P_clks = CLKS period)T = CLKX period = (1 + CLKGDV) * SH = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is evenH = (CLKGDV + 1)/2 * S if CLKGDV is oddL = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is evenL = (CLKGDV + 1)/2 * S if CLKGDV is odd(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal inputon FSX and FSR is inverted before being used internally.CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSPCLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Masterclock (CLKX).
Figure 6-36. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0
Submit Documentation Feedback Peripheral Information and Electrical Specifications 251
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-65. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0
(1) (2)
(see Figure 6-37 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNITMASTER SLAVE
MIN MAX MIN MAX
4 t
su(DRV-CKXH)
Setup time, DR valid before CLKX high 14 2 - 3P ns
5 t
h(CKXH-DRV)
Hold time, DR valid after CLKX high 4 5 + 6P ns
(1) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(2) For all SPI Slave modes, the rate of the internal clock CLKG must be at least 8 times faster than that of the SPI data rate. User shouldprogram sample rate generator to achieve maximum CLKG by setting CLKSM = CLKGDV = 1.
Peripheral Information and Electrical Specifications252 Submit Documentation Feedback
l TEXAS INSTRUMENTS
Bit 0 Bit(n-1) (n-2) (n-3) (n-4)
Bit 0 Bit(n-1) (n-2) (n-3) (n-4)
4
376
21
CLKX
FSX
DX
DR
5
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-66. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPIMaster or Slave: CLKSTP = 11b, CLKXP = 0
(1) (2)
(see Figure 6-37 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNITMASTER
(3)
SLAVE
MIN MAX MIN MAX
1 t
h(CKXL-FXL)
Hold time, FSX low after CLKX low
(4)
L - 4 L + 5.5 ns
2 t
d(FXL-CKXH)
Delay time, FSX low to CLKX high
(5)
T - 4 T + 4 ns
3 t
d(CKXL-DXV)
Delay time, CLKX low to DX valid -4 5.5 3P + 2.8 5P + 17 ns
Disable time, DX high impedance following6 t
dis(CKXL-DXHZ)
-6 7.5 3P + 2 5P + 17 nslast data bit from CLKX low
7 t
d(FXL-DXV)
Delay time, FSX low to DX valid H - 4 H + 5.5 2P + 2 4P + 17 ns
(1) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(2) For all SPI Slave modes, the rate of the internal clock CLKG must be at least 8 times faster than that of the SPI data rate. User shouldprogram sample rate generator to achieve maximum CLKG by setting CLKSM = CLKGDV = 1.(3) S = Sample rate generator input clock = 2P if CLKSM = 1 (P = SYSCLK3 period)S = Sample rate generator input clock = 2P_clks if CLKSM = 0 (P_clks = CLKS period)T = CLKX period = (1 + CLKGDV) * SH = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is evenH = (CLKGDV + 1)/2 * S if CLKGDV is oddL = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is evenL = (CLKGDV + 1)/2 * S if CLKGDV is odd(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal inputon FSX and FSR is inverted before being used internally.CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSPCLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Masterclock (CLKX).
Figure 6-37. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0
Table 6-67. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1
(1) (2)
(see Figure 6-38 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNITMASTER SLAVE
MIN MAX MIN MAX
4 t
su(DRV-CKXH)
Setup time, DR valid before CLKX high 14 2 - 3P ns
5 t
h(CKXH-DRV)
Hold time, DR valid after CLKX high 4 5 + 6P ns
(1) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(2) For all SPI Slave modes, the rate of the internal clock CLKG must be at least 8 times faster than that of the SPI data rate. User shouldprogram sample rate generator to achieve maximum CLKG by setting CLKSM = CLKGDV = 1.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 253
‘5‘ TEXAS INSTRUMENTS
Bit 0 Bit(n-1) (n-2) (n-3) (n-4)
Bit 0 Bit(n-1) (n-2) (n-3) (n-4)
5
4
38
7
6
21
CLKX
FSX
DX
DR
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-68. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPIMaster or Slave: CLKSTP = 10b, CLKXP = 1
(1) (2)
(see Figure 6-38 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNITMASTER
(3)
SLAVE
MIN MAX MIN MAX
1 t
h(CKXH-FXL)
Hold time, FSX low after CLKX high
(4)
T - 4 T + 5.5 ns
2 t
d(FXL-CKXL)
Delay time, FSX low to CLKX low
(5)
H - 4 H + 4 ns
3 t
d(CKXL-DXV)
Delay time, CLKX low to DX valid -4 5.5 3P + 2.8 5P + 17 ns
Disable time, DX high impedance following6 t
dis(CKXH-DXHZ)
H - 6 H + 7.5 nslast data bit from CLKX high
Disable time, DX high impedance following7 t
dis(FXH-DXHZ)
P + 3 3P + 17 nslast data bit from FSX high
8 t
d(FXL-DXV)
Delay time, FSX low to DX valid 2P + 2 4P + 17 ns
(1) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(2) For all SPI Slave modes, the rate of the internal clock CLKG must be at least 8 times faster than that of the SPI data rate. User shouldprogram sample rate generator to achieve maximum CLKG by setting CLKSM = CLKGDV = 1.(3) S = Sample rate generator input clock = 2P if CLKSM = 1 (P = SYSCLK3 period)S = Sample rate generator input clock = 2P_clks if CLKSM = 0 (P_clks = CLKS period)T = CLKX period = (1 + CLKGDV) * SH = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is evenH = (CLKGDV + 1)/2 * S if CLKGDV is oddL = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is evenL = (CLKGDV + 1)/2 * S if CLKGDV is odd(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal inputon FSX and FSR is inverted before being used internally.CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSPCLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Masterclock (CLKX).
Figure 6-38. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1
Table 6-69. Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1
(1) (2)
(see Figure 6-39 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNITMASTER SLAVE
MIN MAX MIN MAX
4 t
su(DRV-CKXH)
Setup time, DR valid before CLKX high 14 2 - 3P ns
5 t
h(CKXH-DRV)
Hold time, DR valid after CLKX high 4 5+ 6P ns
(1) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(2) For all SPI Slave modes, the rate of the internal clock CLKG must be at least 8 times faster than that of the SPI data rate. User shouldprogram sample rate generator to achieve maximum CLKG by setting CLKSM = CLKGDV = 1.
Peripheral Information and Electrical Specifications254 Submit Documentation Feedback
l TEXAS INSTRUMENTS
Bit 0 Bit(n-1) (n-2) (n-3) (n-4)
Bit 0 Bit(n-1) (n-2) (n-3) (n-4)
5
4
3
7
6
21
CLKX
FSX
DX
DR
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-70. Switching Characteristics Over Recommended Operating Conditions for McBSP as SPIMaster or Slave: CLKSTP = 11b, CLKXP = 1
(1) (2)
(see Figure 6-39 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNITMASTER
(3)
SLAVE
MIN MAX MIN MAX
1 t
h(CKXH-FXL)
Hold time, FSX low after CLKX high
(4)
H - 4 H + 5.5 ns
2 t
d(FXL-CKXL)
Delay time, FSX low to CLKX low
(5)
T - 4 T + 4 ns
3 t
d(CKXH-DXV)
Delay time, CLKX high to DX valid -4 5.5 3P + 2.8 5P + 17 ns
Disable time, DX high impedance following6 t
dis(CKXH-DXHZ)
-6 7.5 3P + 2 5P + 17 nslast data bit from CLKX high
7 t
d(FXL-DXV)
Delay time, FSX low to DX valid L - 4 L+ 5.5 2P + 2 4P + 17 ns
(1) P = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use P = 10 ns.(2) For all SPI Slave modes, the rate of the internal clock CLKG must be at least 8 times faster than that of the SPI data rate. User shouldprogram sample rate generator to achieve maximum CLKG by setting CLKSM = CLKGDV = 1.(3) S = Sample rate generator input clock = 2P if CLKSM = 1 (P = SYSCLK3 period)S = Sample rate generator input clock = 2P_clks if CLKSM = 0 (P_clks = CLKS period)T = CLKX period = (1 + CLKGDV) * SH = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is evenH = (CLKGDV + 1)/2 * S if CLKGDV is oddL = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is evenL = (CLKGDV + 1)/2 * S if CLKGDV is odd(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal inputon FSX and FSR is inverted before being used internally.CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSPCLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Masterclock (CLKX).
Figure 6-39. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1
Submit Documentation Feedback Peripheral Information and Electrical Specifications 255
l TEXAS INSTRUMENTS
6.15 Multichannel Audio Serial Port (McASP0) Peripheral
6.15.1 McASP0 Device-Specific Information
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The McASP functions as a general-purpose audio serial port optimized for the needs of multichannelaudio applications. The McASP is useful for time-division multiplexed (TDM) stream, Inter-IntegratedSound (I2S) protocols, and intercomponent digital audio interface transmission (DIT).
The DM6437 device includes one multichannel audio serial port (McASP) interface peripheral (McASP0).The McASP0 is a serial port optimized for the needs of multichannel audio applications.
The McASP0 consists of a transmit and receive section. These sections can operate completelyindependently with different data formats, separate master clocks, bit clocks, and frame syncs oralternatively, the transmit and receive sections may be synchronized. The McASP module also includes apool of 16 shift registers that may be configured to operate as either transmit data or receive data.
The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM)synchronous serial format or in a digital audio interface (DIT) format where the bit stream is encoded forS/PDIF, AES-3, IEC-60958, CP-430 transmission. The receive section of the McASP supports the TDMsynchronous serial format.
The McASP can support one transmit data format (either a TDM format or DIT format) and one receiveformat at a time. All transmit shift registers use the same format and all receive shift registers use thesame format. However, the transmit and receive formats need not be the same.
Both the transmit and receive sections of the McASP also support burst mode which is useful fornon-audio data (for example, passing control information between two DSPs).
The McASP peripheral has additional capability for flexible clock generation, and error detection/handling,as well as error management.
For more detailed information on and the functionality of the McASP0 peripheral, see the TMS320DM643xDMP Multichannel Audio Serial Port (McASP) User's Guide (literature number SPRU980).
Peripheral Information and Electrical Specifications256 Submit Documentation Feedback
l TEXAS INSTRUMENTS V—‘ {}
6.15.1.1 McASP Block Diagram
Receive
Clock
Generator
AHCLKR0
ACLKR0
T
Generator
Clock
Transmit
ACLKX0
AHCLKX0
DIT
RAM
Transmit
Generator
FrameSync AFSX0
Detect
Error
Receive
FrameSync
GeneratorFormatter
Transmit
Data
AMUTE0
AMUTEIN0
AFSR0
Serializer0
Serializer1
Serializer3
Serializer2
ClockCheck
ransmit
(High-
Frequency)
Receive
ClockCheck
(High-
Frequency)
Receive
Formatter
Data
McASP0
DMSTransmit
DMA Receive
INDIVIDUALLY PROGRAMMABLETX/RX/GPIO
Control
GPIO
AXR0[0]
AXR0[1]
AXR0[3]
AXR0[2]
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Figure 6-40 illustrates the major blocks along with external signals of the TMS320DM6437 McASP0peripheral; and shows the 4 serial data [AXR] pins.
Figure 6-40. McASP0 Configuration
Submit Documentation Feedback Peripheral Information and Electrical Specifications 257
l TEXAS INSTRUMENTS
6.15.1.2 McASP0 Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-71. McASP0 Control Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01D0 1000 PID Peripheral Identification register [Register value: 0x0010 0101]
01D0 1004 Reserved
01D0 1008 Reserved
01D0 100C Reserved
01D0 1010 PFUNC Pin function register
01D0 1014 PDIR Pin direction register
01D0 1018 Reserved
01D0 101C Reserved
01D0 1020 Reserved
01D0 1024 01D0 1040 Reserved
01D0 1044 GBLCTL Global control register
01D0 1048 AMUTE Mute control register
01D0 104C DLBCTL Digital Loop-back control register
01D0 1050 DITCTL DIT mode control register
01D0 1054 01D0 105C Reserved
Alias of GBLCTL containing only Receiver Reset bits, allows transmit to be reset01D0 1060 RGBLCTL
independently from receive.
01D0 1064 RMASK Receiver format UNIT bit mask register
01D0 1068 RFMT Receive bit stream format register
01D0 106C AFSRCTL Receive frame sync control register
01D0 1070 ACLKRCTL Receive clock control register
01D0 1074 AHCLKRCTL High-frequency receive clock control register
01D0 1078 RTDM Receive TDM slot 0–31 register
01D0 107C RINTCTL Receiver interrupt control register
01D0 1080 RSTAT Status register – Receiver
01D0 1084 RSLOT Current receive TDM slot register
01D0 1088 RCLKCHK Receiver clock check control register
01D0 108C – 01D0 109C Reserved
Alias of GBLCTL containing only Transmitter Reset bits, allows transmit to be reset01D0 10A0 XGBLCTL
independently from receive.
01D0 10A4 XMASK Transmit format UNIT bit mask register
01D0 10A8 XFMT Transmit bit stream format register
01D0 10AC AFSXCTL Transmit frame sync control register
01D0 10B0 ACLKXCTL Transmit clock control register
01D0 10B4 AHCLKXCTL High-frequency Transmit clock control register
01D0 10B8 XTDM Transmit TDM slot 0–31 register
01D0 10BC XINTCTL Transmit interrupt control register
01D0 10C0 XSTAT Status register – Transmitter
01D0 10C4 XSLOT Current transmit TDM slot
01D0 10C8 XCLKCHK Transmit clock check control register
258 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-71. McASP0 Control Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01D0 10CC 01D0 10FC Reserved
01D0 1100 DITCSRA0 Left (even TDM slot) channel status register file
01D0 1104 DITCSRA1 Left (even TDM slot) channel status register file
01D0 1108 DITCSRA2 Left (even TDM slot) channel status register file
01D0 110C DITCSRA3 Left (even TDM slot) channel status register file
01D0 1110 DITCSRA4 Left (even TDM slot) channel status register file
01D0 1114 DITCSRA5 Left (even TDM slot) channel status register file
01D0 1118 DITCSRB0 Right (odd TDM slot) channel status register file
01D0 111C DITCSRB1 Right (odd TDM slot) channel status register file
01D0 1120 DITCSRB2 Right (odd TDM slot) channel status register file
01D0 1124 DITCSRB3 Right (odd TDM slot) channel status register file
01D0 1128 DITCSRB4 Right (odd TDM slot) channel status register file
01D0 112C DITCSRB5 Right (odd TDM slot) channel status register file
01D0 1130 DITUDRA0 Left (even TDM slot) user data register file
01D0 1134 DITUDRA1 Left (even TDM slot) user data register file
01D0 1138 DITUDRA2 Left (even TDM slot) user data register file
01D0 113C DITUDRA3 Left (even TDM slot) user data register file
01D0 1140 DITUDRA4 Left (even TDM slot) user data register file
01D0 1144 DITUDRA5 Left (even TDM slot) user data register file
01D0 1148 DITUDRB0 Right (odd TDM slot) user data register file
01D0 114C DITUDRB1 Right (odd TDM slot) user data register file
01D0 1150 DITUDRB2 Right (odd TDM slot) user data register file
01D0 1154 DITUDRB3 Right (odd TDM slot) user data register file
01D0 1158 DITUDRB4 Right (odd TDM slot) user data register file
01D0 115C DITUDRB5 Right (odd TDM slot) user data register file
01D0 1160 01D0 117C Reserved
01D0 1180 SRCTL0 Serializer 0 control register
01D0 1184 SRCTL1 Serializer 1 control register
01D0 1188 SRCTL2 Serializer 2 control register
01D0 118C SRCTL3 Serializer 3 control register
01D0 1190 01D0 11FC Reserved
01D0 1200 XBUF0 Transmit Buffer for Serializer 0
01D0 1204 XBUF1 Transmit Buffer for Serializer 1
01D0 1208 XBUF2 Transmit Buffer for Serializer 2
01D0 120C XBUF3 Transmit Buffer for Serializer 3
01D0 1210 01D0 127C Reserved
01D0 1280 RBUF0 Receive Buffer for Serializer 0
01D0 1284 RBUF1 Receive Buffer for Serializer 1
01D0 1288 RBUF2 Receive Buffer for Serializer 2
01D0 128C RBUF3 Receive Buffer for Serializer 3
01D0 1290 01D0 13FF Reserved
Table 6-72. McASP0 Data Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
(Used when RSEL or XSELMcASP0 receive buffers or McASP0 transmit buffers via bits = 0 [these bits are located01D0 1400 01D0 17FF RBUF/XBUF
the Peripheral Data Bus. in the RFMT or XFMT registers,respectively].)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 259
l TEXAS INSTRUMENTS
6.15.1.3 McASP0 Electrical Data/Timing
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
6.15.1.3.1 Multichannel Audio Serial Port (McASP) Timing
Table 6-73. Timing Requirements for McASP (see Figure 6-41 and Figure 6-42 )
(1)
-7/-6/-5/-4
-L/-Q6/-Q5/-NO. UNITQ4
MIN MAX
1 t
c(AHCKRX)
Cycle time, AHCLKR/X 25 ns
2 t
w(AHCKRX)
Pulse duration, AHCLKR/X high or low 10 ns
3 t
c(CKRX)
Cycle time, ACLKR/X ACLKR/X ext 25 ns
4 t
w(CKRX)
Pulse duration, ACLKR/X high or low ACLKR/X ext 10 ns
ACLKR/X int 11 ns5 t
su(FRX-CKRX)
Setup time, AFSR/X input valid before ACLKR/X latches data
ACLKR/X ext 3 ns
ACLKR/X int 0 ns
6 t
h(CKRX-FRX)
Hold time, AFSR/X input valid after ACLKR/X latches data ACLKR/X ext input 4 ns
ACLKR/X ext output 6 ns
ACLKR/X int 11 ns7 t
su(AXR-CKRX)
Setup time, AXR input valid before ACLKR/X latches data
ACLKR/X ext 3 ns
ACLKR/X int 3 ns
8 t
h(CKRX-AXR)
Hold time, AXR input valid after ACLKR/X latches data ACLKR/X ext input 4 ns
ACLKR/X ext output 6 ns
(1) ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1
Peripheral Information and Electrical Specifications260 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-74. Switching Characteristics Over Recommended Operating Conditions for McASP
(1) (2)
(see Figure 6-41 and Figure 6-42 )
(3)
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
9 t
c(AHCKRX)
Cycle time, AHCLKR/X 25 ns
10 t
w(AHCKRX)
Pulse duration, AHCLKR/X high or low AH - 2.5 ns
ACLKR/X11 t
c(CKRX)
Cycle time, ACLKR/X 25 nsint
ACLKR/X12 t
w(CKRX)
Pulse duration, ACLKR/X high or low A - 2.5 nsint
ACLKR/X
-2.25 5.5 nsint
ACLKR/X13 t
d(CKRX-FRX)
Delay time, ACLKR/X transmit edge to AFSX/R output valid 0 12.5 nsext input
ACLKR/X
0 14 nsext output
ACLKX int -2.25 5.5 ns
ACLKX
0 12.5 ns14 t
d(CKX-AXRV)
Delay time, ACLKX transmit edge to AXR output valid ext input
ACLKX
0 14 nsext output
ACLKR/X
-4.5 8 nsintDisable time, AXR high impedance following last data bit from15 t
dis(CKRX-AXRHZ)
ACLKR/X transmit edge
ACLKR/X
-4.5 12.5 nsext
(1) A = (ACLKR/X period)/2 in ns. For example, when ACLKR/X period is 25 ns, use A = 12.5 ns.(2) AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.(3) ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1
Submit Documentation Feedback Peripheral Information and Electrical Specifications 261
TEXAS INSTRUMENTS 4k 4 a J H l #4 +l Mu l WVWVWWWVWM MWWWWVVVVVWVVVV J l 4 Lf AFSR/X(Bi1Wid1h, 0 EH Delay) m AFSR/X(Bi1Wid1h, I all Delay) AFSR/X(Bi1Wid1h, 2 all Delay) AFSR/X(Slo1wid1h, 0 EH Delay) —/1—H—\—) /—“— \ AFSR/X(Slo1wid1h, I all Delay) /—‘—“ I'—\ I—“— \ AFSR/X(Slo1wid1h, 2 all Delay) /—l—“\ /—”— \ 4&3 +1 #7 A0 A1 A30 A31 Bo E1 Ban I331 ca CI 02 ca 031
8
7
4
4
3
2
21
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
AXR[n] (Data In/Receive)
6
5
ACLKR/X (CLKRP = CLKXP = 0)(A)
ACLKR/X (CLKRP = CLKXP = 1)(B)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASPreceiver is configured for falling edge (to shift data in).
B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASPreceiver is configured for rising edge (to shift data in).
Figure 6-41. McASP Input Timings
262 Peripheral Information and Electrical Specifications Submit Documentation Feedback
i TEXAS INSTRUMENTS emwww AHCLKmx (Rising Edge Poiariiv) WW "4" H‘VIZ l “W al WWW/vvvvw WWWM ‘ ‘ #Wua ‘ 1:4 ‘4” F713 13; )« AFSR/X (Bil Wimh,oBiu Delay) ”L « AFSR/X(Bitwidth,IBitDelay) fl k AFSR/X(Bitwidth,2BitDelay) J\\ l i l i—‘* AFSR/X (sum Width, 0 all Delay) 5 Q fl ‘ l AFSR/X (sum wumuu, u all Delay) m I l l AFSR/X (sum wumuu, 2 all Delay) fl % u“) f l I )—J‘ F l l 5 a I ? iaeeeeeeeeeee T AXR[n] (Dam ommansmuu) AD A1 A30A31 ED 51 BSD BQI CD C1 CZ 03 CC“
15
14
13
13
13
13
13
13
13
12
12
11
10
10
9
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
AXR[n] (Data Out/Transmit)
ACLKR/X (CLKRP = CLKXP = 0)(B)
ACLKR/X (CLKRP = CLKXP = 1)(A)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASPreceiver is configured for rising edge (to shift data in).
B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASPreceiver is configured for falling edge (to shift data in).
Figure 6-42. McASP Output Timings
Submit Documentation Feedback Peripheral Information and Electrical Specifications 263
l TEXAS INSTRUMENTS
6.16 High-End Controller Area Network Controller (HECC)
6.16.1 HECC Device-Specific Information
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The DM6437 device has a High-End Controller Area Network Controllers (HECC). The HECC usesestablished protocol to communicate serially with other controllers in harsh environments. The HECC isfully compliant with the Controller Area Network (CAN) protocol, version 2.0B.
Key features of the HECC include the following:CAN, version 2.0B compliant32 RX/TX message objects32 receive identifier masksProgrammable wake-up on bus activityProgrammable interrupt schemeAutomatic reply to a remote requestAutomatic re-transmission in case of error or loss of arbitrationProtection against reception of a new message32-bit time stampLocal network time counterProgrammable priority register for each messageProgrammable transmission and reception time-outHECC/SCC mode of operationStandard-Extended IdentifierSelf-test mode
For more details on the HECC, see the TMS320DM643x High-End CAN Controller (HECC) User's Guide(literature number SPRU981).
Software must not access "Reserved" locations of the HECC. Access to HECC "Reserved" locations mayhang the device.
264 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRU981
6.16.2 HECC Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-75 through Table 6-78 show the High-End CAN Controller (HECC) registers. For more detailedinformation, see the TMS320DM643x DMP High-End CAN Controller User’s Guide (literature numberSPRU981 ).
Table 6-75. HECC Control and Status Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01C2 3000 CANME Mailbox Enable Register
01C2 3004 CANMD Mailbox Direction Register
01C2 3008 CANTRS Transmission Request Set Register
01C2 300C CANTRR Transmission Request Reset Register
01C2 3010 CANTA Transmission Acknowledge Register
01C2 3014 CANAA Abort Acknowledge Register
01C2 3018 CANRMP Receive Message Pending Register
01C2 301C CANRML Receive Message Lost Register
01C2 3020 CANRFP Remote Frame Pending Register
01C2 3024 CANGAM Global Acceptance Mask Register (SCC Mode Only)
01C2 3028 CANMC Master Control Register
01C2 302C CANBTC Bit-Timing Configuration Register
01C2 3030 CANES Error and Status Register
01C2 3034 CANTEC Transmit Error Counter Register
01C2 3038 CANREC Receive Error Counter Register
01C2 303C CANGIF0 Global Interrupt Flag 0 Register
01C2 3040 CANGIM Global Interrupt Mask Register
01C2 3044 CANGIF1 Global Interrupt Flag 1 Register
01C2 3048 CANMIM Mailbox Interrupt Mask Register
01C2 304C CANMIL Mailbox Interrupt Level Register
01C2 3050 CANOPC Overwrite Protection Control Register
01C2 3054 CANTIOC Transmit I/O Control Register
01C2 3058 CANRIOC Receive I/O Control Register
01C2 305C CANLNT Local Network Time Register (HECC Mode Only)
01C2 3060 CANTOC Time-Out Control Register (HECC Mode Only)
01C2 3064 CANTOS Time-Out Status Register (HECC Mode Only)
01C2 3068 01C2 306C Reserved
01C2 3070 CANETC Error Test Control Register
01C2 3074 01C2 307C Reserved
01C2 3080 SCCLAM0 SCC Local Acceptance Mask Register 0 (SCC Mode Only)
01C2 3084 01C2 3088 Reserved
01C2 308C SSCLAM3 SCC Local Acceptance Mask Register 3 (SCC Mode Only)
01C2 3090 01C2 4FFF Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 265
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-76. HECC Message Object Registers
(1)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
HECC Local Acceptance Mask Registers
01C2 5000 LAM0 HECC Local Acceptance Mask Register for Mailbox 0
01C2 5004 LAM1 HECC Local Acceptance Mask Register for Mailbox 1
01C2 5008 LAM2 HECC Local Acceptance Mask Register for Mailbox 2
01C2 500C LAM3 HECC Local Acceptance Mask Register for Mailbox 3
01C2 5010 LAM4 HECC Local Acceptance Mask Register for Mailbox 4
01C2 5014 LAM5 HECC Local Acceptance Mask Register for Mailbox 5
01C2 5018 LAM6 HECC Local Acceptance Mask Register for Mailbox 6
01C2 501C LAM7 HECC Local Acceptance Mask Register for Mailbox 7
01C2 5020 LAM8 HECC Local Acceptance Mask Register for Mailbox 8
01C2 5024 LAM9 HECC Local Acceptance Mask Register for Mailbox 9
01C2 5028 LAM10 HECC Local Acceptance Mask Register for Mailbox 10
01C2 502C LAM11 HECC Local Acceptance Mask Register for Mailbox 11
01C2 5030 LAM12 HECC Local Acceptance Mask Register for Mailbox 12
01C2 5034 LAM13 HECC Local Acceptance Mask Register for Mailbox 13
01C2 5038 LAM14 HECC Local Acceptance Mask Register for Mailbox 14
01C2 503C LAM15 HECC Local Acceptance Mask Register for Mailbox 15
01C2 5040 LAM16 HECC Local Acceptance Mask Register for Mailbox 16
01C2 5044 LAM17 HECC Local Acceptance Mask Register for Mailbox 17
01C2 5048 LAM18 HECC Local Acceptance Mask Register for Mailbox 18
01C2 504C LAM19 HECC Local Acceptance Mask Register for Mailbox 19
01C2 5050 LAM20 HECC Local Acceptance Mask Register for Mailbox 20
01C2 5054 LAM21 HECC Local Acceptance Mask Register for Mailbox 21
01C2 5058 LAM22 HECC Local Acceptance Mask Register for Mailbox 22
01C2 505C LAM23 HECC Local Acceptance Mask Register for Mailbox 23
01C2 5060 LAM24 HECC Local Acceptance Mask Register for Mailbox 24
01C2 5064 LAM25 HECC Local Acceptance Mask Register for Mailbox 25
01C2 5068 LAM26 HECC Local Acceptance Mask Register for Mailbox 26
01C2 506C LAM27 HECC Local Acceptance Mask Register for Mailbox 27
01C2 5070 LAM28 HECC Local Acceptance Mask Register for Mailbox 28
01C2 5074 LAM29 HECC Local Acceptance Mask Register for Mailbox 29
01C2 5078 LAM30 HECC Local Acceptance Mask Register for Mailbox 30
01C2 507C LAM31 HECC Local Acceptance Mask Register for Mailbox 31
Message Object Time-Stamp Registers
01C2 5080 MOTS0 Message Object Time-Stamp Register for Mailbox 0
01C2 5084 MOTS1 Message Object Time-Stamp Register for Mailbox 1
01C2 5088 MOTS2 Message Object Time-Stamp Register for Mailbox 2
01C2 508C MOTS3 Message Object Time-Stamp Register for Mailbox 3
01C2 5090 MOTS4 Message Object Time-Stamp Register for Mailbox 4
01C2 5094 MOTS5 Message Object Time-Stamp Register for Mailbox 5
01C2 5098 MOTS6 Message Object Time-Stamp Register for Mailbox 6
01C2 509C MOTS7 Message Object Time-Stamp Register for Mailbox 7
01C2 50A0 MOTS8 Message Object Time-Stamp Register for Mailbox 8
01C2 50A4 MOTS9 Message Object Time-Stamp Register for Mailbox 9
01C2 50A8 MOTS10 Message Object Time-Stamp Register for Mailbox 10
01C2 50AC MOTS11 Message Object Time-Stamp Register for Mailbox 11
(1) All registers in this table apply to HECC mode only, they do not apply to SCC mode.
Peripheral Information and Electrical Specifications266 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-76. HECC Message Object Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01C2 50B0 MOTS12 Message Object Time-Stamp Register for Mailbox 12
01C2 50B4 MOTS13 Message Object Time-Stamp Register for Mailbox 13
01C2 50B8 MOTS14 Message Object Time-Stamp Register for Mailbox 14
01C2 50BC MOTS15 Message Object Time-Stamp Register for Mailbox 15
01C2 50C0 MOTS16 Message Object Time-Stamp Register for Mailbox 16
01C2 50C4 MOTS17 Message Object Time-Stamp Register for Mailbox 17
01C2 50C8 MOTS18 Message Object Time-Stamp Register for Mailbox 18
01C2 50CC MOTS19 Message Object Time-Stamp Register for Mailbox 19
01C2 50D0 MOTS20 Message Object Time-Stamp Register for Mailbox 20
01C2 50D4 MOTS21 Message Object Time-Stamp Register for Mailbox 21
01C2 50D8 MOTS22 Message Object Time-Stamp Register for Mailbox 22
01C2 50DC MOTS23 Message Object Time-Stamp Register for Mailbox 23
01C2 50E0 MOTS24 Message Object Time-Stamp Register for Mailbox 24
01C2 50E4 MOTS25 Message Object Time-Stamp Register for Mailbox 25
01C2 50E8 MOTS26 Message Object Time-Stamp Register for Mailbox 26
01C2 50EC MOTS27 Message Object Time-Stamp Register for Mailbox 27
01C2 50F0 MOTS28 Message Object Time-Stamp Register for Mailbox 28
01C2 50F4 MOTS29 Message Object Time-Stamp Register for Mailbox 29
01C2 50F8 MOTS30 Message Object Time-Stamp Register for Mailbox 30
01C2 50FC MOTS31 Message Object Time-Stamp Register for Mailbox 31
Message Object Time-Out Registers
01C2 5100 MOTO0 Message Object Time-Out Register for Mailbox 0
01C2 5104 MOTO1 Message Object Time-Out Register for Mailbox 1
01C2 5108 MOTO2 Message Object Time-Out Register for Mailbox 2
01C2 510C MOTO3 Message Object Time-Out Register for Mailbox 3
01C2 5110 MOTO4 Message Object Time-Out Register for Mailbox 4
01C2 5114 MOTO5 Message Object Time-Out Register for Mailbox 5
01C2 5118 MOTO6 Message Object Time-Out Register for Mailbox 6
01C2 511C MOTO7 Message Object Time-Out Register for Mailbox 7
01C2 5120 MOTO8 Message Object Time-Out Register for Mailbox 8
01C2 5124 MOTO9 Message Object Time-Out Register for Mailbox 9
01C2 5128 MOTO10 Message Object Time-Out Register for Mailbox 10
01C2 512C MOTO11 Message Object Time-Out Register for Mailbox 11
01C2 5130 MOTO12 Message Object Time-Out Register for Mailbox 12
01C2 5134 MOTO13 Message Object Time-Out Register for Mailbox 13
01C2 5138 MOTO14 Message Object Time-Out Register for Mailbox 14
01C2 513C MOTO15 Message Object Time-Out Register for Mailbox 15
01C2 5140 MOTO16 Message Object Time-Out Register for Mailbox 16
01C2 5144 MOTO17 Message Object Time-Out Register for Mailbox 17
01C2 5148 MOTO18 Message Object Time-Out Register for Mailbox 18
01C2 514C MOTO19 Message Object Time-Out Register for Mailbox 19
01C2 5150 MOTO20 Message Object Time-Out Register for Mailbox 20
01C2 5154 MOTO21 Message Object Time-Out Register for Mailbox 21
01C2 5158 MOTO22 Message Object Time-Out Register for Mailbox 22
01C2 515C MOTO23 Message Object Time-Out Register for Mailbox 23
01C2 5160 MOTO24 Message Object Time-Out Register for Mailbox 24
01C2 5164 MOTO25 Message Object Time-Out Register for Mailbox 25
Submit Documentation Feedback Peripheral Information and Electrical Specifications 267
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-76. HECC Message Object Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01C2 5168 MOTO26 Message Object Time-Out Register for Mailbox 26
01C2 516C MOTO27 Message Object Time-Out Register for Mailbox 27
01C2 5170 MOTO28 Message Object Time-Out Register for Mailbox 28
01C2 5174 MOTO29 Message Object Time-Out Register for Mailbox 29
01C2 5178 MOTO30 Message Object Time-Out Register for Mailbox 30
01C2 517C MOTO31 Message Object Time-Out Register for Mailbox 31
Table 6-77. HECC Message Mailbox RAM
(1) (2)
HEX ADDRESS RANGE DESCRIPTION
01C2 4000 – 01C2 400F Mailbox 0 (4 32-bit Registers)
01C2 4010 – 01C2 401F Mailbox 1 (4 32-bit Registers)
01C2 4020 – 01C2 402F Mailbox 2 (4 32-bit Registers)
01C2 4030 – 01C2 403F Mailbox 3 (4 32-bit Registers)
01C2 4040 – 01C2 404F Mailbox 4 (4 32-bit Registers)
... ...
01C2 41E0 01C2 41EF Mailbox 30 (4 32-bit Registers)
01C2 41F0 01C2 41FF Mailbox 31 (4 32-bit Registers)
(1) This table summarizes the address ranges for the Message Mailboxes 0 to 31. For the contents within each Message Mailbox RAM, seeTable 6-78 ,Message Mailbox n RAM Entries.(2) For SCC mode, only Mailboxes 0 to 15 are supported.
Table 6-78. HECC Message Mailbox n RAM Entries
(1)
HEX ADDRESS
ACRONYM
(2)
MAILBOX REGISTER NAMEOFFSET (within RAM)
0 MIDn Message Identifier Register for Mailbox n
4 MCFn Message Control Field Register for Mailbox n
8 MDLn Message Data Low-Word Register for Mailbox n
C MDHn Message Data High-Word Register for Mailbox n
(1) For the hex address range of Mailbox n, see Table 6-77 ,Message Mailbox RAM. For example, Message Mailbox 0 occupies hexaddress range 0x01C2 4000 0x01C2 400F.(2) The suffix "n" indicates the Message Mailbox number. For example, Message Mailbox 0 has the following Message Mailbox Registers:MID0, MCF0, MDL0, and MDH0.
Peripheral Information and Electrical Specifications268 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.16.3 HECC Electrical Data/Timing
2
HECCx_RX
4
HECCx_TX
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-79. Timing Requirements for HECC Receive
(1)
(see Figure 6-43 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 f
(baud)
Maximum programmable baud rate 1 Mbps
2 t
w(HECC_RX)
Pulse duration, receive data bit H - 2 H + 2 ns
(1) H = HECC baud time = 1/programmed baud rate.
Table 6-80. Switching Characteristics Over Recommended Operating Conditions for HECC Transmit
(1)
(see Figure 6-43 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
3 f
(baud)
Maximum programmable baud rate 1 Mbps
4 t
w(HECC_TX)
Pulse duration, transmit data bit H - 2 H + 2 ns
(1) H = HECC baud time = 1/programmed baud rate.
Figure 6-43. HECC Transmit/Receive Timing
Submit Documentation Feedback Peripheral Information and Electrical Specifications 269
l TEXAS INSTRUMENTS
6.17 Ethernet Media Access Controller (EMAC)
6.17.1 EMAC Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
The Ethernet Media Access Controller (EMAC) provides an efficient interface between DM6437 and thenetwork. The DM6437 EMAC supports both 10Base-T (10 Mbits/second [Mbps]) and 100Base-TX (100Mbps) in either half- or full-duplex mode. The EMAC module also supports hardware flow control andquality of service (QOS) support.
The EMAC controls the flow of packet data from the DM6437 device to the PHY. The MDIO modulecontrols PHY configuration and status monitoring.
The EMAC module conforms to the IEEE 802.3-2002 standard, describing the “Carrier Sense MultipleAccess with Collision Detection (CSMA/CD) Access Method and Physical Layer” specifications. The IEEE802.3 standard has also been adopted by ISO/IEC and re-designated as ISO/IEC 8802-3:2000(E).
Deviation from this standard, the EMAC module does not use the Transmit Coding Error signal MTXER.Instead of driving the error pin when an underflow condition occurs on a transmitted frame, the EMAC willintentionally generate an incorrect checksum by inverting the frame CRC, so that the transmitted framewill be detected as an error by the network.
Both the EMAC and the MDIO modules interface to the DM6437 device through a custom interface thatallows efficient data transmission and reception. This custom interface is referred to as the EMAC controlmodule, and is considered integral to the EMAC/MDIO peripheral. The control module is also used tomultiplex and control interrupts.
For the DM6437 Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO)Module User's Guide (literature number SPRU941) which describes the DM6437 EMAC peripheral indetail, see Section 2.9 ,Documentation Support section . For a list of supported registers and registerfields, see Table 6-81 [Ethernet MAC (EMAC) Control Registers] and Table 6-82 [EMAC StatisticsRegisters] in this data manual.
Table 6-81. Ethernet MAC (EMAC) Control Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01C8 0000 TXIDVER Transmit Identification and Version Register
01C8 0004 TXCONTROL Transmit Control Register
01C8 0008 TXTEARDOWN Transmit Teardown Register
01C8 0010 RXIDVER Receive Identification and Version Register
01C8 0014 RXCONTROL Receive Control Register
01C8 0018 RXTEARDOWN Receive Teardown Register
01C8 0080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register
01C8 0084 TXINTSTATMASKED Transmit Interrupt Status (Masked) Register
01C8 0088 TXINTMASKSET Transmit Interrupt Mask Set Register
01C8 008C TXINTMASKCLEAR Transmit Interrupt Mask Clear Register
01C8 0090 MACINVECTOR MAC Input Vector Register
01C8 00A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register
01C8 00A4 RXINTSTATMASKED Receive Interrupt Status (Masked) Register
01C8 00A8 RXINTMASKSET Receive Interrupt Mask Set Register
01C8 00AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register
01C8 00B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register
01C8 00B4 MACINTSTATMASKED MAC Interrupt Status (Masked) Register
01C8 00B8 MACINTMASKSET MAC Interrupt Mask Set Register
01C8 00BC MACINTMASKCLEAR MAC Interrupt Mask Clear Register
01C8 0100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register
01C8 0104 RXUNICASTSET Receive Unicast Enable Set Register
Peripheral Information and Electrical Specifications270 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-81. Ethernet MAC (EMAC) Control Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01C8 0108 RXUNICASTCLEAR Receive Unicast Clear Register
01C8 010C RXMAXLEN Receive Maximum Length Register
01C8 0110 RXBUFFEROFFSET Receive Buffer Offset Register
01C8 0114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register
01C8 0120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register
01C8 0124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register
01C8 0128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register
01C8 012C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register
01C8 0130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register
01C8 0134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register
01C8 0138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register
01C8 013C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register
01C8 0140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register
01C8 0144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register
01C8 0148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register
01C8 014C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register
01C8 0150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register
01C8 0154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register
01C8 0158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register
01C8 015C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register
01C8 0160 MACCONTROL MAC Control Register
01C8 0164 MACSTATUS MAC Status Register
01C8 0168 EMCONTROL Emulation Control Register
01C8 016C FIFOCONTROL FIFO Control Register (Transmit and Receive)
01C8 0170 MACCONFIG MAC Configuration Register
01C8 0174 SOFTRESET Soft Reset Register
01C8 01D0 MACSRCADDRLO MAC Source Address Low Bytes Register (Lower 32-bits)
01C8 01D4 MACSRCADDRHI MAC Source Address High Bytes Register (Upper 16-bits)
01C8 01D8 MACHASH1 MAC Hash Address Register 1
01C8 01DC MACHASH2 MAC Hash Address Register 2
01C8 01E0 BOFFTEST Back Off Test Register
01C8 01E4 TPACETEST Transmit Pacing Algorithm Test Register
01C8 01E8 RXPAUSE Receive Pause Timer Register
01C8 01EC TXPAUSE Transmit Pause Timer Register
01C8 0200 - 01C8 02FC (see Table 6-82 ) EMAC Statistics Registers
01C8 0500 MACADDRLO MAC Address Low Bytes Register
01C8 0504 MACADDRHI MAC Address High Bytes Register
01C8 0508 MACINDEX MAC Index Register
01C8 0600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register
01C8 0604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register
01C8 0608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register
01C8 060C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register
01C8 0610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register
01C8 0614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register
01C8 0618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register
01C8 061C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register
01C8 0620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 271
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-81. Ethernet MAC (EMAC) Control Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01C8 0624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register
01C8 0628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register
01C8 062C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register
01C8 0630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register
01C8 0634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register
01C8 0638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register
01C8 063C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register
Transmit Channel 0 Completion Pointer (Interrupt Acknowledge)01C8 0640 TX0CP
Register
Transmit Channel 1 Completion Pointer (Interrupt Acknowledge)01C8 0644 TX1CP
Register
Transmit Channel 2 Completion Pointer (Interrupt Acknowledge)01C8 0648 TX2CP
Register
Transmit Channel 3 Completion Pointer (Interrupt Acknowledge)01C8 064C TX3CP
Register
Transmit Channel 4 Completion Pointer (Interrupt Acknowledge)01C8 0650 TX4CP
Register
Transmit Channel 5 Completion Pointer (Interrupt Acknowledge)01C8 0654 TX5CP
Register
Transmit Channel 6 Completion Pointer (Interrupt Acknowledge)01C8 0658 TX6CP
Register
Transmit Channel 7 Completion Pointer (Interrupt Acknowledge)01C8 065C TX7CP
Register
Receive Channel 0 Completion Pointer (Interrupt Acknowledge)01C8 0660 RX0CP
Register
Receive Channel 1 Completion Pointer (Interrupt Acknowledge)01C8 0664 RX1CP
Register
Receive Channel 2 Completion Pointer (Interrupt Acknowledge)01C8 0668 RX2CP
Register
Receive Channel 3 Completion Pointer (Interrupt Acknowledge)01C8 066C RX3CP
Register
Receive Channel 4 Completion Pointer (Interrupt Acknowledge)01C8 0670 RX4CP
Register
Receive Channel 5 Completion Pointer (Interrupt Acknowledge)01C8 0674 RX5CP
Register
Receive Channel 6 Completion Pointer (Interrupt Acknowledge)01C8 0678 RX6CP
Register
Receive Channel 7 Completion Pointer (Interrupt Acknowledge)01C8 067C RX7CP
Register
272 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-82. EMAC Statistics Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01C8 0200 RXGOODFRAMES Good Receive Frames Register
Broadcast Receive Frames Register01C8 0204 RXBCASTFRAMES
(Total number of good broadcast frames received)
Multicast Receive Frames Register01C8 0208 RXMCASTFRAMES
(Total number of good multicast frames received)
01C8 020C RXPAUSEFRAMES Pause Receive Frames Register
Receive CRC Errors Register (Total number of frames received with01C8 0210 RXCRCERRORS
CRC errors)
Receive Alignment/Code Errors Register01C8 0214 RXALIGNCODEERRORS
(Total number of frames received with alignment/code errors)
Receive Oversized Frames Register01C8 0218 RXOVERSIZED
(Total number of oversized frames received)
Receive Jabber Frames Register01C8 021C RXJABBER
(Total number of jabber frames received)
Receive Undersized Frames Register01C8 0220 RXUNDERSIZED
(Total number of undersized frames received)
01C8 0224 RXFRAGMENTS Receive Frame Fragments Register
01C8 0228 RXFILTERED Filtered Receive Frames Register
01C8 022C RXQOSFILTERED Received QOS Filtered Frames Register
Receive Octet Frames Register01C8 0230 RXOCTETS
(Total number of received bytes in good frames)
Good Transmit Frames Register01C8 0234 TXGOODFRAMES
(Total number of good frames transmitted)
01C8 0238 TXBCASTFRAMES Broadcast Transmit Frames Register
01C8 023C TXMCASTFRAMES Multicast Transmit Frames Register
01C8 0240 TXPAUSEFRAMES Pause Transmit Frames Register
01C8 0244 TXDEFERRED Deferred Transmit Frames Register
01C8 0248 TXCOLLISION Transmit Collision Frames Register
01C8 024C TXSINGLECOLL Transmit Single Collision Frames Register
01C8 0250 TXMULTICOLL Transmit Multiple Collision Frames Register
01C8 0254 TXEXCESSIVECOLL Transmit Excessive Collision Frames Register
01C8 0258 TXLATECOLL Transmit Late Collision Frames Register
01C8 025C TXUNDERRUN Transmit Underrun Error Register
01C8 0260 TXCARRIERSENSE Transmit Carrier Sense Errors Register
01C8 0264 TXOCTETS Transmit Octet Frames Register
01C8 0268 FRAME64 Transmit and Receive 64 Octet Frames Register
01C8 026C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register
01C8 0270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register
01C8 0274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register
01C8 0278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register
01C8 027C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register
01C8 0280 NETOCTETS Network Octet Frames Register
01C8 0284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register
01C8 0288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register
Receive DMA Start of Frame and Middle of Frame Overruns01C8 028C RXDMAOVERRUNS
Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 273
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-83. EMAC Control Module Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C8 1004 EWCTL Interrupt control register
0x01C8 1008 EWINTTCNT Interrupt timer count
Table 6-84. EMAC Control Module RAM
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C8 2000 - 0x01C8 3FFF EMAC Control Module Descriptor Memory
Peripheral Information and Electrical Specifications274 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.17.2 EMAC Electrical Data/Timing
MRCLK
2 3
1
MTCLK
2 3
1
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-85. Timing Requirements for MRCLK (see Figure 6-44 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT10 Mbps 100 Mbps
MIN MAX MIN MAX
1 t
c(MRCLK)
Cycle time, MRCLK 400 40 ns
2 t
w(MRCLKH)
Pulse duration, MRCLK high 140 14 ns
3 t
w(MRCLKL)
Pulse duration, MRCLK low 140 14 ns
Figure 6-44. MRCLK Timing (EMAC - Receive)
Table 6-86. Timing Requirements for MTCLK (see Figure 6-44 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT10 Mbps 100 Mbps
MIN MAX MIN MAX
1 t
c(MTCLK)
Cycle time, MTCLK 400 40 ns
2 t
w(MTCLKH)
Pulse duration, MTCLK high 140 14 ns
3 t
w(MTCLKL)
Pulse duration, MTCLK low 140 14 ns
Figure 6-45. MTCLK Timing (EMAC - Transmit)
Table 6-87. Timing Requirements for EMAC MII Receive 10/100 Mbit/s
(1)
(see Figure 6-46 )
-7/-6/-5/-4
-L/-Q6/-Q5/-NO. UNITQ4
MIN MAX
1 t
su(MRXD-MRCLKH)
Setup time, receive selected signals valid before MRCLK high 8 ns
2 t
h(MRCLKH-MRXD)
Hold time, receive selected signals valid after MRCLK high 8 ns
(1) Receive selected signals include: MRXD3-MRXD0, MRXDV, and MRXER.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 275
l TEXAS INSTRUMENTS OVVVVVO'O'O'O'O'O'O'O'O'O'O OV'O'O'OVI - mm2z¢¢¢¢¢¢¢¢v - _ arms: w¢;¢'~;¢;¢'¢;¢;¢;¢ 3’3'3’3‘3‘3‘3‘3‘3‘3‘3‘3’3’3’3’3’3’3’3'3’3’e ‘Mofomfmmm O‘Q‘Q‘Q‘Q‘Q‘0333333333333 OVVVVVVVV _ ‘ofofofofofofofo‘ :2
MRCLK (Input)
1
2
MRXD3−MRXD0,
MRXDV, MRXER (Inputs)
1
MTCLK (Input)
MTXD3−MTXD0,
MTXEN (Outputs)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Figure 6-46. EMAC Receive Interface Timing
Table 6-88. Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit10/100 Mbit/s
(1)
(see Figure 6-47 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
d(MTCLKH-MTXD)
Delay time, MTCLK high to transmit selected signals valid 2 25 ns
(1) Transmit selected signals include: MTXD3-MTXD0, and MTXEN.
Figure 6-47. EMAC Transmit Interface Timing
276 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.18 Management Data Input/Output (MDIO)
6.18.1 Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order toenumerate all PHY devices in the system.
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface tointerrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIOmodule to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve thenegotiation results, and configure required parameters in the EMAC module for correct operation. Themodule is designed to allow almost transparent operation of the MDIO interface, with very littlemaintenance from the core processor. Only one PHY may be connected at any given time.
For more detailed information on the MDIO peripheral, see the Documentation Support section for theEthernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO) Module ReferenceGuide. For a list of supported registers and register fields, see Table 6-89 [MDIO Registers] in this datamanual.
Table 6-89. MDIO Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C8 4000 Reserved
0x01C8 4004 CONTROL MDIO Control Register
0x01C8 4008 ALIVE MDIO PHY Alive Status Register
0x01C8 400C LINK MDIO PHY Link Status Register
0x01C8 4010 LINKINTRAW MDIO Link Status Change Interrupt (Unmasked) Register
0x01C8 4014 LINKINTMASKED MDIO Link Status Change Interrupt (Masked) Register
0x01C8 4018 Reserved
0x01C8 4020 USERINTRAW MDIO User Command Complete Interrupt (Unmasked) Register
0x01C8 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register
0x01C8 4028 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register
0x01C8 402C USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register
0x01C8 4030 - 0x01C8 407C Reserved
0x01C8 4080 USERACCESS0 MDIO User Access Register 0
0x01C8 4084 USERPHYSEL0 MDIO User PHY Select Register 0
0x01C8 4088 USERACCESS1 MDIO User Access Register 1
0x01C8 408C USERPHYSEL1 MDIO User PHY Select Register 1
0x01C8 4090 - 0x01C8 47FF Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 277
l TEXAS INSTRUMENTS ‘ ‘ ‘ MDIo 9999999 9999‘ ‘99 99999 (inpuu ’9’9’9‘9’9’9‘9‘”‘9’9"9’9’9‘9’9‘9'9’9‘9’9‘9‘9’9‘9‘9’9‘9‘9‘ ’92929292929292929292929292929292929 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 7 ‘ ‘ MDIO '9'9'9'9'9'9'9'9'9'9'9'9'9'9'9'9'9'9'9'9'9'9'"9"9'9'9'9'9‘ 9'9"'9'9'9'9'9'9'9'9'9'9'9'9'9'9 WW) ’9‘9’9‘9’9’9‘9‘9’9‘9‘9’9’9’9‘9‘9’9‘9‘9’9’9‘9’9‘9’9’9‘9‘9’9‘9‘9‘ ‘9’9‘9‘9‘9’9‘9’9‘9’9’9‘9‘9’9‘9‘9’9’9
6.18.2 Management Data Input/Output (MDIO) Electrical Data/Timing
1
45
MDCLK
MDIO
(input)
33
1
7
MDCLK
MDIO
(output)
6.19 Timers
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-90. Timing Requirements for MDIO Input (see Figure 6-48 and Figure 6-49 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
c(MDCLK)
Cycle time, MDCLK 400 ns
2 t
w(MDCLK)
Pulse duration, MDCLK high/low 180 ns
3 t
t(MDCLK)
Transition time, MDCLK 5 ns
4 t
su(MDIO-MDCLKH)
Setup time, MDIO data input valid before MDCLK high 10 ns
5 t
h(MDCLKH-MDIO)
Hold time, MDIO data input valid after MDCLK high 10 ns
Figure 6-48. MDIO Input Timing
Table 6-91. Switching Characteristics Over Recommended Operating Conditions for MDIO Output(see Figure 6-49 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
7 t
d(MDCLKL-MDIO)
Delay time, MDCLK low to MDIO data output valid 100 ns
Figure 6-49. MDIO Output Timing
The DM6437 device has 3 64-bit general-purpose timers which have the following features:64-bit count-up counterTimer modes:
64-bit general-purpose timer mode (Timer 0 and 1)
Dual 32-bit general-purpose timer mode (Timer 0 and 1)
– Watchdog timer mode (Timer 2)2 possible clock sources:
Peripheral Information and Electrical Specifications278 Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.19.1 Timer Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
– Internal clock
External clock input via timer input pin TINPL (Timer 0 and 1 only)2 operation modes:
– One-time operation (timer runs for one period then stops)
– Continuous operation (timer automatically resets after each period)Generates interrupts to the DSPGenerates sync event to EDMACauses device global reset upon watchdog timer timeout (Timer 2 only)
For more detailed information, see Section 2.9 ,Documentation Support for the TMS320DM643x DMP64-Bit Timer User's Guide (literature number SPRU989).
Table 6-92. Timer 0 Registers
HEX ADDRESS RANGE ACRONYM DESCRIPTION
0x01C2 1400 - Reserved
0x01C2 1404 EMUMGT_CLKSPD Timer 0 Emulation Management/Clock Speed Register
0x01C2 1410 TIM12 Timer 0 Counter Register 12
0x01C2 1414 TIM34 Timer 0 Counter Register 34
0x01C2 1418 PRD12 Timer 0 Period Register 12
0x01C2 141C PRD34 Timer 0 Period Register 34
0x01C2 1420 TCR Timer 0 Control Register
0x01C2 1424 TGCR Timer 0 Global Control Register
0x01C2 1428 - 0x01C2 17FF - Reserved
Table 6-93. Timer 1 Registers
HEX ADDRESS RANGE ACRONYM DESCRIPTION
0x01C2 1800 - Reserved
0x01C2 1804 EMUMGT_CLKSPD Timer 1 Emulation Management/Clock Speed Register
0x01C2 1810 TIM12 Timer 1 Counter Register 12
0x01C2 1814 TIM34 Timer 1 Counter Register 34
0x01C2 1818 PRD12 Timer 1 Period Register 12
0x01C2 181C PRD34 Timer 1 Period Register 34
0x01C2 1820 TCR Timer 1 Control Register
0x01C2 1824 TGCR Timer 1 Global Control Register
0x01C2 1828 - 0x01C2 1BFF - Reserved
Table 6-94. Timer 2 (Watchdog) Registers
HEX ADDRESS RANGE ACRONYM DESCRIPTION
0x01C2 1C00 - Reserved
0x01C2 1C04 EMUMGT_CLKSPD Timer 2 Emulation Management/Clock Speed Register
0x01C2 1C10 TIM12 Timer 2 Counter Register 12
0x01C2 1C14 TIM34 Timer 2 Counter Register 34
0x01C2 1C18 PRD12 Timer 2 Period Register 12
0x01C2 1C1C PRD34 Timer 2 Period Register 34
0x01C2 1C20 TCR Timer 2 Control Register
0x01C2 1C24 TGCR Timer 2 Global Control Register
0x01C2 1C28 WDTCR Timer 2 Watchdog Timer Control Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 279
l TEXAS INSTRUMENTS
6.19.2 Timer Electrical Data/Timing
TINPxL
TOUTxL
12
34
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-94. Timer 2 (Watchdog) Registers (continued)
HEX ADDRESS RANGE ACRONYM DESCRIPTION
0x01C2 1C2C - 0x01C2 1FFF - Reserved
Table 6-95. Timing Requirements for Timer Input
(1) (2) (3)
(see Figure 6-50 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
TINP0L, if TIMERCTL.TINP0SEL = 0
2P ns[default]1 t
w(TINPH)
Pulse duration, TINPxL high
TINP0L, if TIMERCTL.TINP0SEL = 1 0.33P ns
TINP1L 2P ns
TINP0L, if TIMERCTL.TINP0SEL = 0
2P ns[default]2 t
w(TINPL)
Pulse duration, TINPxL low
TINP0L, if TIMERCTL.TINP0SEL = 1 0.33P ns
TINP1L 2P ns
(1) P = MXI/CLKIN cycle time in ns. For example, when MXI/CLKIN frequency is 27 MHz, use P = 37.0 37 ns.(2) The TIMERCTL.TINP0SEL field in the System Module determines if the TINP0L input directly goes to Timer 0(TIMERCTL.TINP0SEL=0), or if the TINP0L input is first divided down by 6 before going to Timer 0 (TIMERCTL.TINP0SEL=1).(3) TINP1L input goes directly to Timer 1.
Table 6-96. Switching Characteristics Over Recommended Operating Conditions for Timer Output
(1)
(seeFigure 6-50 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
3 t
w(TOUTH)
Pulse duration, TOUTxL high P ns
4 t
w(TOUTL)
Pulse duration, TOUTxL low P ns
(1) P = MXI/CLKIN cycle time in ns. For example, when MXI/CLKIN frequency is 27 MHz, use P = 37.0 37 ns.
Figure 6-50. Timer Timing
280 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRUQSS SPRAAGO
6.20 Peripheral Component Interconnect (PCI)
6.20.1 PCI Device-Specific Information
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The DM6437 DMP supports connections to PCI-compliant devices via the integrated PCI master/slave businterface. The PCI port interfaces to DSP internal resources via the data switched central resource. Thedata switched central resource is described in more detail in Section 4 ,System Interconnect.
For more detailed information on the PCI port peripheral module, see the TMS320DM643x DMPPeripheral Component Interconnect (PCI) User's Guide (literature number SPRU985).
The PCI peripheral can act both as a PCI bus master and as a target. It supports PCI bus operation ofspeeds up to 33 MHz and uses a 32-bit data/address bus.
On the DM6437 device, the pins of the PCI peripheral are multiplexed with the pins of the VPSS, EMIFA,GPIO, HPI, VLYNQ, and EMAC peripherals. For more detailed information on how to select PCI, seeSection 3 , Device Configurations.
The DM6437 device provides an initialization mechanism through which the default values for some of thePCI configuration registers can be read from an I2C EEPROM. Table 6-97 shows the registers which canbe initialized through the PCI auto-initialization. The default value of these registers when PCIauto-initialization is not used is also shown in Table 6-97 . PCI auto-initialization is enabled by selectingPCI boot with auto-initialization. For information on how to select PCI boot with auto-initialization, seeSection 3.4.1 , Boot Modes. For more information on PCI auto-initialization, see the TMS320DM643x DMPPeripheral Component Interconnect (PCI) User's Guide (literature number SPRU985 ) and the Using theTMS320DM643x Bootloader Application Report (literature number SPRAAG0 ).
The PCI peripheral is a master peripheral within the DM6437 DMP.
Table 6-97. Default Values for PCI Configuration Registers
REGISTER DEFAULT VALUE (HEX)
Vendor ID 104C
Device ID B001
Class Code 11 8000
Revision ID 01
System Vendor ID 0000
Subsystem ID 0000
Max Latency 00
Min Grant 00
Interrupt Pin 00
Interrupt Line 00
Submit Documentation Feedback Peripheral Information and Electrical Specifications 281
l TEXAS INSTRUMENTS
6.20.2 PCI Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-98. PCI Memory-Mapped Registers
DSP ACCESS
ACRONYM DSP ACCESS REGISTER NAMEHEX ADDRESS RANGE
01C1 A000 - 01C1 A00F - Reserved
01C1 A010 PCISTATSET PCI Status Set Register
01C1 A014 PCISTATCLR PCI Status Clear Register
01C1 A018 - 01C1 A01F - Reserved
01C1 A020 PCIHINTSET PCI Host Interrupt Enable Set Register
01C1 A024 PCIHINTCLR PCI Host Interrupt Enable Clear Register
01C1 A028 - 01C1 A02F - Reserved
01C1 A030 PCIDINTSET PCI DSP Interrupt Enable Set Register
01C1 A034 PCIDINTCLR PCI DSP Interrupt Enable Clear Register
01C1 A038 - 01C1 A0FF - Reserved
01C1 A100 PCIVENDEVMIR PCI Vendor ID/Device ID Mirror Register
01C1 A104 PCICSRMIR PCI Command/Status Mirror Register
01C1 A108 PCICLREVMIR PCI Class Code/Revision ID Mirror Register
01C1 A10C PCICLINEMIR PCI BIST/Header Type/Latency Timer/Cacheline Size Mirror Register
01C1 A110 PCIBAR0MSK PCI Base Address Mask Register 0
01C1 A114 PCIBAR1MSK PCI Base Address Mask Register 1
01C1 A118 PCIBAR2MSK PCI Base Address Mask Register 2
01C1 A11C PCIBAR3MSK PCI Base Address Mask Register 3
01C1 A120 PCIBAR4MSK PCI Base Address Mask Register 4
01C1 A124 PCIBAR5MSK PCI Base Address Mask Register 5
01C1 A128 - 01C1 A12B - Reserved
01C1 A12C PCISUBIDMIR PCI Subsystem Vendor ID/Subsystem ID Mirror Register
01C1 A130 - Reserved
01C1 A134 PCICPBPTRMIR PCI Capabilities Pointer Mirror Register
01C1 A138 - 01C1 A13B - Reserved
01C1 A13C PCILGINTMIR PCI Max Latency/Min Grant/Interrupt Pin/Interrupt Line Mirror Register
01C1 A140 - 01C1 A17F - Reserved
01C1 A180 PCISLVCNTL PCI Slave Control Register
01C1 A184 - 01C1 A1BF - Reserved
01C1 A1C0 PCIBAR0TRL PCI Slave Base Address 0 Translation Register
01C1 A1C4 PCIBAR1TRL PCI Slave Base Address 1 Translation Register
01C1 A1C8 PCIBAR2TRL PCI Slave Base Address 2 Translation Register
01C1 A1CC PCIBAR3TRL PCI Slave Base Address 3 Translation Register
01C1 A1D0 PCIBAR4TRL PCI Slave Base Address 4 Translation Register
01C1 A1D4 PCIBAR5TRL PCI Slave Base Address 5 Translation Register
01C1 A1D8 - 01C1 A1DF - Reserved
01C1 A1E0 PCIBAR0MIR PCI Base Address Register 0 Mirror Register
01C1 A1E4 PCIBAR1MIR PCI Base Address Register 1 Mirror Register
01C1 A1E8 PCIBAR2MIR PCI Base Address Register 2 Mirror Register
01C1 A1EC PCIBAR3MIR PCI Base Address Register 3 Mirror Register
01C1 A1F0 PCIBAR4MIR PCI Base Address Register 4 Mirror Register
01C1 A1F4 PCIBAR5MIR PCI Base Address Register 5 Mirror Register
01C1 A1F8 - 01C1 A2FF - Reserved
01C1 A300 PCIMCFGDAT PCI Master Configuration/IO Access Data Register
Peripheral Information and Electrical Specifications282 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-98. PCI Memory-Mapped Registers (continued)
DSP ACCESS
ACRONYM DSP ACCESS REGISTER NAMEHEX ADDRESS RANGE
01C1 A304 PCIMCFGADR PCI Master Configuration/IO Access Address Register
01C1 A308 PCIMCFGCMD PCI Master Configuration/IO Access Command Register
01C1 A30C - 01C1 A30F - Reserved
01C1 A310 PCIMSTCFG PCI Master Configuration Register
01C1 A314 PCIADDSUB0 PCI Address Substitution 0 Register
01C1 A318 PCIADDSUB1 PCI Address Substitution 1 Register
01C1 A31C PCIADDSUB2 PCI Address Substitution 2 Register
01C1 A320 PCIADDSUB3 PCI Address Substitution 3 Register
01C1 A324 PCIADDSUB4 PCI Address Substitution 4 Register
01C1 A328 PCIADDSUB5 PCI Address Substitution 5 Register
01C1 A32C PCIADDSUB6 PCI Address Substitution 6 Register
01C1 A330 PCIADDSUB7 PCI Address Substitution 7 Register
01C1 A334 PCIADDSUB8 PCI Address Substitution 8 Register
01C1 A338 PCIADDSUB9 PCI Address Substitution 9 Register
01C1 A33C PCIADDSUB10 PCI Address Substitution 10 Register
01C1 A340 PCIADDSUB11 PCI Address Substitution 11 Register
01C1 A344 PCIADDSUB12 PCI Address Substitution 12 Register
01C1 A348 PCIADDSUB13 PCI Address Substitution 13 Register
01C1 A34C PCIADDSUB14 PCI Address Substitution 14 Register
01C1 A350 PCIADDSUB15 PCI Address Substitution 15 Register
01C1 A354 PCIADDSUB16 PCI Address Substitution 16 Register
01C1 A358 PCIADDSUB17 PCI Address Substitution 17 Register
01C1 A35C PCIADDSUB18 PCI Address Substitution 18 Register
01C1 A360 PCIADDSUB19 PCI Address Substitution 19 Register
01C1 A364 PCIADDSUB20 PCI Address Substitution 20 Register
01C1 A368 PCIADDSUB21 PCI Address Substitution 21 Register
01C1 A36C PCIADDSUB22 PCI Address Substitution 22 Register
01C1 A370 PCIADDSUB23 PCI Address Substitution 23 Register
01C1 A374 PCIADDSUB24 PCI Address Substitution 24 Register
01C1 A378 PCIADDSUB25 PCI Address Substitution 25 Register
01C1 A37C PCIADDSUB26 PCI Address Substitution 26 Register
01C1 A380 PCIADDSUB27 PCI Address Substitution 27 Register
01C1 A384 PCIADDSUB28 PCI Address Substitution 28 Register
01C1 A388 PCIADDSUB29 PCI Address Substitution 29 Register
01C1 A38C PCIADDSUB30 PCI Address Substitution 30 Register
01C1 A390 PCIADDSUB31 PCI Address Substitution 31 Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 283
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-99. PCI Hook Configuration Registers
DSP ACCESS
ACRONYM DSP ACCESS REGISTER NAMEHEX ADDRESS RANGE
01C1 A394 PCIVENDEVPRG PCI Vendor ID and Device ID Program Register
01C1 A398 Reserved
01C1 A39C PCICLREVPRG PCI Class Code and Revision ID Program Register
01C1 A3A0 PCISUBIDPRG PCI Subsystem Vendor ID and Subsystem ID Program Register
01C1 A3A4 PCIMAXLGPRG PCI Max Latency and Min Grant Program Register
01C1 A3A8 Reserved
01C1 A3AC PCICFGDONE PCI Configuration Done Register
01C1 A3B0 - 01C1 A7FF Reserved
Peripheral Information and Electrical Specifications284 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-100. PCI External Memory Space
HEX ADDRESS RANGE ACRONYM PCI MASTER WINDOW
3000 0000 - 307F FFFF - PCI Master Window 0
3080 0000 - 30FF FFFF - PCI Master Window 1
3100 0000 - 317F FFFF - PCI Master Window 2
3180 0000 - 31FF FFFF - PCI Master Window 3
3200 0000 - 327F FFFF - PCI Master Window 4
3280 0000 - 32FF FFFF - PCI Master Window 5
3300 0000 - 337F FFFF - PCI Master Window 6
3380 0000 - 33FF FFFF - PCI Master Window 7
3400 0000 - 347F FFFF - PCI Master Window 8
3480 0000 - 34FF FFFF - PCI Master Window 9
3500 0000 - 357F FFFF - PCI Master Window 10
3580 0000 - 35FF FFFF - PCI Master Window 11
3600 0000 - 367F FFFF - PCI Master Window 12
3680 0000 - 36FF FFFF - PCI Master Window 13
3700 0000 - 377F FFFF - PCI Master Window 14
3780 0000 - 37FF FFFF - PCI Master Window 15
3800 0000 - 387F FFFF - PCI Master Window 16
3880 0000 - 38FF FFFF - PCI Master Window 17
3900 0000 - 397F FFFF - PCI Master Window 18
3980 0000 - 39FF FFFF - PCI Master Window 19
3A00 0000 - 3A7F FFFF - PCI Master Window 20
3A80 0000 - 3AFF FFFF - PCI Master Window 21
3B00 0000 - 3B7F FFFF - PCI Master Window 22
3B80 0000 - 3BFF FFFF - PCI Master Window 23
3C00 0000 - 3C7F FFFF - PCI Master Window 24
3C80 0000 - 3CFF FFFF - PCI Master Window 25
3D00 0000 - 3D7F FFFF - PCI Master Window 26
3D80 0000 - 3DFF FFFF - PCI Master Window 27
3E00 0000 - 3E7F FFFF - PCI Master Window 28
3E80 0000 - 3EFF FFFF - PCI Master Window 29
3F00 0000 - 3F7F FFFF - PCI Master Window 30
3F80 0000 - 3FFF FFFF - PCI Master Window 31
Submit Documentation Feedback Peripheral Information and Electrical Specifications 285
l TEXAS INSTRUMENTS
6.20.3 PCI Electrical Data/Timing
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Texas Instruments (TI) has performed the simulation and system characterization to ensure that the PCIperipheral meets all AC timing specifications as required by the PCI Local Bus Specification Revision 2.3.Therefore, the AC timing specifications are not reproduced here. For more information on the AC timingspecifications, see Section 4.2.3, Timing Specification (33-MHz timing) of the PCI Local Bus SpecificationRevision 2.3.Note: The DM6437 PCI peripheral only supports 3.3-V signaling and 33-MHz operation.
286 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.21 Pulse Width Modulator (PWM)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The 3 DM6437 Pulse Width Modulator (PWM) peripherals support the following features:Period counterFirst-phase duration counterRepeat count for one-shot operationConfigurable to operate in either one-shot or continuous modeBuffered period and first-phase duration registersOne-shot operation triggerable by hardware events with programmable edge transitions. (low-to-high orhigh-to-low).
One-shot operation generates N+1 periods of waveform, N being the repeat count register valueEmulation support
The register memory maps for PWM0/1/2 are shown in Table 6-101 ,Table 6-102 , and Table 6-103 .
Table 6-101. PWM0 Register Memory Map
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C2 2000 Reserved
0x01C2 2004 PCR PWM0 Peripheral Control Register
0x01C2 2008 CFG PWM0 Configuration Register
0x01C2 200C START PWM0 Start Register
0x01C2 2010 RPT PWM0 Repeat Count Register
0x01C2 2014 PER PWM0 Period Register
0x01C2 2018 PH1D PWM0 First-Phase Duration Register
0x01C2 201C - 0x01C2 23FF - Reserved
Table 6-102. PWM1 Register Memory Map
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C2 2400 Reserved
0x01C2 2404 PCR PWM1 Peripheral Control Register
0x01C2 2408 CFG PWM1 Configuration Register
0x01C2 240C START PWM1 Start Register
0x01C2 2410 RPT PWM1 Repeat Count Register
0x01C2 2414 PER PWM1 Period Register
0x01C2 2418 PH1D PWM1 First-Phase Duration Register
0x01C2 241C -0x01C2 27FF - Reserved
Table 6-103. PWM2 Register Memory Map
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C2 2800 Reserved
0x01C2 2804 PCR PWM2 Peripheral Control Register
0x01C2 2808 CFG PWM2 Configuration Register
0x01C2 280C START PWM2 Start Register
0x01C2 2810 RPT PWM2 Repeat Count Register
0x01C2 2814 PER PWM2 Period Register
0x01C2 2818 PH1D PWM2 First-Phase Duration Register
0x01C2 281C - 0x01C2 2BFF - Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 287
l TEXAS INSTRUMENTS vmccum _/—\ L— —q PWMD d X 3‘\ | \ LX X ‘k | \ ‘ ‘ W X \ |
6.21.1 PWM0/1/2 Electrical Data/Timing
PWM0/1/2
1
3
3
2
4
VD(CCDC)
4
4
INVALID
INVALID
INVALID
VALID
VALID
VALID
PWM0
PWM1
PWM2
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-104. Switching Characteristics Over Recommended Operating Conditions for PWM0/1/2 Outputs(see Figure 6-51 and Figure 6-52 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
1 t
w(PWMH)
Pulse duration, PWMx high 37 ns
2 t
w(PWML)
Pulse duration, PWMx low 37 ns
3 t
t(PWM)
Transition time, PWMx 5 ns
4 t
d(CCDC-PWMV)
Delay time, CCDC(VD) trigger event to PWMx valid 2 10 ns
Figure 6-51. PWM Output Timing
Figure 6-52. PWM Output Delay Timing
288 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.22 VLYNQ
6.22.1 VLYNQ Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The DM6437 VLYNQ peripheral provides a high speed serial communications interface with the followingfeatures.
Low Pin CountScalable Performance / SupportSimple Packet Based Transfer Protocol for Memory Mapped Access
Write Request / Data Packet
– Read Request Packet
– Read Response Data Packet
Interrupt Request PacketSupports both Symmetric and Asymmetric Operation
Tx pins on first device connect to Rx pins on second device and vice versa
– Data pin widths are automatically detected after reset
Request packets, response packets, and flow control information are all multiplexed and sentacross the same physical pins
Supports both Host/Peripheral and Peer to Peer communicationSimple Block Code Packet Formatting (8b/10b)In Band Flow Control
– No extra pins needed
Allows receiver to momentarily throttle back transmitter when overflow is about to occur
Uses built in special code capability of block code to seamlessly interleave flow control informationwith user data
Allows system designer to balance cost of data buffering versus performanceMultiple outstanding transactionsAutomatic packet formatting optimizationsInternal loop-back mode
Table 6-105. VLYNQ Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01E0 1000 - Reserved
0x01E0 1004 CTRL VLYNQ Local Control Register
0x01E0 1008 STAT VLYNQ Local Status Register
0x01E0 100C INTPRI VLYNQ Local Interrupt Priority Vector Status/Clear Register
0x01E0 1010 INTSTATCLR VLYNQ Local Unmasked Interrupt Status/Clear Register
0x01E0 1014 INTPENDSET VLYNQ Local Interrupt Pending/Set Register
0x01E0 1018 INTPTR VLYNQ Local Interrupt Pointer Register
0x01E0 101C XAM VLYNQ Local Transmit Address Map Register
0x01E0 1020 RAMS1 VLYNQ Local Receive Address Map Size 1 Register
0x01E0 1024 RAMO1 VLYNQ Local Receive Address Map Offset 1 Register
0x01E0 1028 RAMS2 VLYNQ Local Receive Address Map Size 2 Register
0x01E0 102C RAMO2 VLYNQ Local Receive Address Map Offset 2 Register
0x01E0 1030 RAMS3 VLYNQ Local Receive Address Map Size 3 Register
0x01E0 1034 RAMO3 VLYNQ Local Receive Address Map Offset 3 Register
0x01E0 1038 RAMS4 VLYNQ Local Receive Address Map Size 4 Register
0x01E0 103C RAMO4 VLYNQ Local Receive Address Map Offset 4 Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 289
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-105. VLYNQ Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01E0 1040 CHIPVER VLYNQ Local Chip Version Register
0x01E0 1044 AUTNGO VLYNQ Local Auto Negotiation Register
0x01E0 1048 - Reserved
0x01E0 104C - Reserved
0x01E0 1050 - 0x01E0 105C - Reserved
0x01E0 1060 - Reserved
01E0 10C00 0064 - Reserved
0x01E0 1068 - 0x01E0 107C - Reserved for future use
0x01E0 1080 RREVID VLYNQ Remote Revision Register
0x01E0 1084 RCTRL VLYNQ Remote Control Register
0x01E0 1088 RSTAT VLYNQ Remote Status Register
0x01E0 108C RINTPRI VLYNQ Remote Interrupt Priority Vector Status/Clear Register
0x01E0 1090 RINTSTATCLR VLYNQ Remote Unmasked Interrupt Status/Clear Register
0x01E0 1094 RINTPENDSET VLYNQ Remote Interrupt Pending/Set Register
0x01E0 1098 RINTPTR VLYNQ Remote Interrupt Pointer Register
0x01E0 109C RXAM VLYNQ Remote Transmit Address Map Register
0x01E0 10A0 RRAMS1 VLYNQ Remote Receive Address Map Size 1 Register
0x01E0 10A4 RRAMO1 VLYNQ Remote Receive Address Map Offset 1 Register
0x01E0 10A8 RRAMS2 VLYNQ Remote Receive Address Map Size 2 Register
0x01E0 10AC RRAMO2 VLYNQ Remote Receive Address Map Offset 2 Register
0x01E0 10B0 RRAMS3 VLYNQ Remote Receive Address Map Size 3 Register
0x01E0 10B4 RRAMO3 VLYNQ Remote Receive Address Map Offset 3 Register
0x01E0 10B8 RRAMS4 VLYNQ Remote Receive Address Map Size 4 Register
0x01E0 10BC RRAMO4 VLYNQ Remote Receive Address Map Offset 4 Register
VLYNQ Remote Chip Version Register (values on the device_id and0x01E0 10C0 RCHIPVER
device_rev pins of remote VLYNQ)
0x01E0 10C4 RAUTNGO VLYNQ Remote Auto Negotiation Register
0x01E0 10C8 RMANNGO VLYNQ Remote Manual Negotiation Register
0x01E0 10CC RNGOSTAT VLYNQ Remote Negotiation Status Register
0x01E0 10D0 - 0x01E0 10DC - Reserved
VLYNQ Remote Interrupt Vectors 3 - 0 (sourced from vlynq_int_i[3:0] port of0x01E0 10E0 RINTVEC0
remote VLYNQ)
VLYNQ Remote Interrupt Vectors 7 - 4 (sourced from vlynq_int_i[7:4] port of0x01E0 10E4 RINTVEC1
remote VLYNQ)
0x01E0 10E8 - 0x01E0 10FC - Reserved for future use
0x01E0 1100 - 0x01E0 1FFF - Reserved
Peripheral Information and Electrical Specifications290 Submit Documentation Feedback
‘5‘ TEXAS INSTRUMENTS
6.22.2 VLYNQ Electrical Data/Timing
VLYNQ_CLK
3
1
2
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-106. Timing Requirements for VLYNQ_CLK Input (see Figure 6-53 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
c(VCLK)
Cycle time, VLYNQ_CLK 10 ns
2 t
w(VCLKH)
Pulse duration, VLYNQ_CLK high 3 ns
3 t
w(VCLKL)
Pulse duration, VLYNQ_CLK low 3 ns
Table 6-107. Switching Characteristics Over Recommended Operating Conditions for VLYNQ_CLKOutput (see Figure 6-53 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
1 t
c(VCLK)
Cycle time, VLYNQ_CLK 10 ns
2 t
w(VCLKH)
Pulse duration, VLYNQ_CLK high 4 ns
3 t
w(VCLKL)
Pulse duration, VLYNQ_CLK low 4 ns
Figure 6-53. VLYNQ_CLK Timing for VLYNQ
Table 6-108. Switching Characteristics Over Recommended Operating Conditions for Transmit Data forthe VLYNQ Module (see Figure 6-54 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
t
d(VCLKH-
1 Delay time, VLYNQ_CLK high to VLYNQ_TXD[3:0] invalid 2.25 nsTXDI)
t
d(VCLKH-
2 Delay time, VLYNQ_CLK high to VLYNQ_TXD[3:0] valid 12 nsTXDV)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 291
‘5‘ TEXAS INSTRUMENTS
VLYNQ_CLK
VLYNQ_TXD[3:0]
VLYNQ_RXD[3:0]
1
2
34
Data
Data
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-109. Timing Requirements for Receive Data for the VLYNQ Module
(1)
(see Figure 6-54 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
RTM disabled, RTM sample = 3 1.75 nsSetup time, VLYNQ_RXD[3:0] valid before3 t
su(RXDV-VCLKH)
VLYNQ_CLK high
RTM enabled
(1)
ns
RTM disabled, RTM sample = 3 3 nsHold time, VLYNQ_RXD[3:0] valid after4 t
h(VCLKH-RXDV)
VLYNQ_CLK high
RTM enabled
(1)
ns
(1) The VLYNQ receive timing manager (RTM) is a serial receive logic designed to eliminate setup and hold violations that could occur intraditional input signals. RTM logic automatically selects the setup and hold timing from one of eight data flops (see Table 6-110 ). WhenRTM logic is disabled, the setup and hold timing from the default data flop (3) is used.
Table 6-110. RTM RX Data Flop Hold/Setup TimingConstraints (Typical Values)
RX Data Flop HOLD (Y) SETUP (X)
0 1.3 0.9
1 1.4 0.7
2 1.5 -0.4
3 1.6 -0.6
4 1.8 -0.8
5 2.0 -1.0
6 2.2 -1.1
7 2.4 -1.2
Figure 6-54. VLYNQ Transmit/Receive Timing
292 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRUQSB
6.23 General-Purpose Input/Output (GPIO)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.When configured as an output, a write to an internal register can control the state driven on the output pin.When configured as an input, the state of the input is detectable by reading the state of an internalregister. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in differentinterrupt/event generation modes. The GPIO peripheral provides generic connections to external devices.The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GP[0:15]).
The DM6437 GPIO peripheral supports the following:Up to 111 3.3-V GPIO pins, GP[0:110]Interrupts:
Up to 8 unique GP[0:7] interrupts from Bank 0
7 GPIO bank (aggregated) interrupt signals from each of the 7 banks of GPIOs
Interrupts can be triggered by rising and/or falling edge, specified for each interrupt capable GPIOsignalDMA events:
Up to 8 unique GPIO DMA events from Bank 0
7 GPIO bank (aggregated) DMA event signals from each of the 7 banks of GPIOsSet/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIOsignal(s). This allows multiple firmware processes to toggle GPIO output signals without critical sectionprotection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching toanther process during GPIO programming).Separate Input/Output registersOutput register in addition to set/clear so that, if preferred by firmware, some GPIO output signals canbe toggled by direct write to the output register(s).Output register, when read, reflects output drive status. This, in addition to the input register reflectingpin status and open-drain I/O cell, allows wired logic be implemented.
The memory map for the GPIO registers is shown in Table 6-111 . For more detailed information onGPIOs, see the TMS320DM643x DMP General-Purpose Input/Output (GPIO) User's Guide (literaturenumber SPRU988 ).
Submit Documentation Feedback Peripheral Information and Electrical Specifications 293
l TEXAS INSTRUMENTS
6.23.1 GPIO Peripheral Register Description(s)
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-111. GPIO Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C6 7000 PID Peripheral Identification Register
0x01C6 7004 - Reserved
0x01C6 7008 BINTEN GPIO interrupt per-bank enable
GPIO Banks 0 and 1
0x01C6 700C - Reserved
0x01C6 7010 DIR01 GPIO Banks 0 and 1 Direction Register (GP[0:31])
0x01C6 7014 OUT_DATA01 GPIO Banks 0 and 1 Output Data Register (GP[0:31])
0x01C6 7018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register (GP[0:31])
0x01C6 701C CLR_DATA01 GPIO Banks 0 and 1 Clear data for banks 0 and 1 (GP[0:31])
0x01C6 7020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register (GP[0:31])
0x01C6 7024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register (GP[0:31])
0x01C6 7028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register (GP[0:31])
0x01C6 702C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register (GP[0:31])
0x01C6 7030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register (GP[0:31])
0x01C6 7034 INSTAT01 GPIO Banks 0 and 1 Interrupt Status Register (GP[0:31])
GPIO Banks 2 and 3
0x01C6 7038 DIR23 GPIO Banks 2 and 3 Direction Register (GP[32:63])
0x01C6 703C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register (GP[32:63])
0x01C6 7040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register (GP[32:63])
0x01C6 7044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register (GP[32:63])
0x01C6 7048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register (GP[32:63])
0x01C6 704C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register (GP[32:63])
0x01C6 7050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register (GP[32:63])
0x01C6 7054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register (GP[32:63])
0x01C6 7058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register (GP[32:63])
0x01C6 705C INSTAT23 GPIO Banks 2 and 3 Interrupt Status Register (GP[32:63])
GPIO Bank 4 and 5
0x01C6 7060 DIR45 GPIO Bank 4 and 5 Direction Register (GP[64:95])
0x01C6 7064 OUT_DATA45 GPIO Bank 4 and 5 Output Data Register (GP[64:95])
0x01C6 7068 SET_DATA45 GPIO Bank 4 and 5 Set Data Register (GP[64:95])
0x01C6 706C CLR_DATA45 GPIO Bank 4 and 5 Clear Data Register (GP[64:95])
0x01C6 7070 IN_DATA45 GPIO Bank 4 and 5 Input Data Register (GP[64:95])
0x01C6 7074 SET_RIS_TRIG45 GPIO Bank 4 and 5 Set Rising Edge Interrupt Register (GP[64:95])
0x01C6 7078 CLR_RIS_TRIG45 GPIO Bank 4 and 5 Clear Rising Edge Interrupt Register (GP[64:95])
0x01C6 707C SET_FAL_TRIG45 GPIO Bank 4 and 5 Set Falling Edge Interrupt Register (GP[64:95])
0x01C6 7080 CLR_FAL_TRIG45 GPIO Bank 4 and 5 Clear Falling Edge Interrupt Register (GP[64:95])
0x01C6 7084 INSTAT45 GPIO Bank 4 and 5 Interrupt Status Register (GP[64:95])
GPIO Bank 6
0x01C6 7088 DIR6 GPIO Bank 6 Direction Register (GP[96:110])
0x01C6 708C OUT_DATA6 GPIO Bank 6 Output Data Register (GP[96:110])
0x01C6 7090 SET_DATA6 GPIO Bank 6 Set Data Register (GP[96:110])
0x01C6 7094 CLR_DATA6 GPIO Bank 6 Clear Data Register (GP[96:110])
0x01C6 7098 IN_DATA6 GPIO Bank 6 Input Data Register (GP[96:110])
0x01C6 709C SET_RIS_TRIG6 GPIO Bank 6 Set Rising Edge Interrupt Register (GP[96:110])
0x01C6 70A0 CLR_RIS_TRIG6 GPIO Bank 6 Clear Rising Edge Interrupt Register (GP[96:110])
Peripheral Information and Electrical Specifications294 Submit Documentation Feedback
l TEXAS INSTRUMENTS
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
Table 6-111. GPIO Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01C6 70A4 SET_FAL_TRIG6 GPIO Bank 6 Set Falling Edge Interrupt Register (GP[96:110])
0x01C6 70A8 CLR_FAL_TRIG6 GPIO Bank 6 Clear Falling Edge Interrupt Register (GP[96:110])
0x01C6 70AC INSTAT6 GPIO Bank 6 Interrupt Status Register (GP[96:110])
0x01C6 70B0 - 0x01C6 7FFF - Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 295
l TEXAS INSTRUMENTS
6.23.2 GPIO Peripheral Input/Output Electrical Data/Timing
GP[x]
Input
GP[x]
Output
4
3
2
1
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-112. Timing Requirements for GPIO Inputs
(1)
(see Figure 6-55 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
w(GPIH)
Pulse duration, GP[x] input high 2C
(2)
ns
2 t
w(GPIL)
Pulse duration, GP[x] input low 2C
(2)
ns
(1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have DM6437 recognizethe GP[x] input changes through software polling of the GPIO register, the GP[x] input duration must be extended to allow DM6437enough time to access the GPIO register through the internal bus.(2) C = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use C = 10 ns.
Table 6-113. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs(see Figure 6-55 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
3 t
w(GPOH)
Pulse duration, GP[x] output high 2C
(1) (2)
ns
4 t
w(GPOL)
Pulse duration, GP[x] output low 2C
(1) (2)
ns
(1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of theGPIO is dependent upon internal bus activity.(2) C = SYSCLK3 period in ns. For example, when running parts at 600 MHz, use C = 10 ns.
Figure 6-55. GPIO Port Timing
296 Peripheral Information and Electrical Specifications Submit Documentation Feedback
l TEXAS INSTRUMENTS
6.24 IEEE 1149.1 JTAG
6.24.1 JTAG ID (JTAGID) Register Description(s)
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The JTAG
(3)
interface is used for BSDL testing and emulation of the DM6437 device.
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device orexercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked byTCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
For maximum reliability, DM6437 includes an internal pulldown (IPD) on the TRST pin to ensure thatTRST will always be asserted upon power up and the device's internal emulation logic will always beproperly initialized.
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAGcontrollers may not drive TRST high but expect the use of a pullup resistor on TRST.
When using this type of JTAG controller, assert TRST to initialize the device after powerup and externallydrive TRST high before attempting any emulation or boundary scan operations.
(3) IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
Table 6-114. JTAG ID (JTAGID) Register
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
Read-only. Provides 32-bit0x01C4 0028 JTAGID JTAG Identification Register
JTAG ID of the device.
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For theDM6437 device, the JTAG ID register resides at address location 0x01C4 0028. For the actual register bitnames and their associated bit field descriptions, see Figure 6-56 and Table 6-115 .
31-28 27-12 11-1 0
VARIANT (4-Bit) PART NUMBER (16-Bit) MANUFACTURER (11-Bit) LSB
R-n R-1011 0111 0010 0001 R-0000 0010 111 R-1
LEGEND: R = Read, W = Write, n = value at reset
Figure 6-56. JTAG ID (JTAGID) Register—0x01C4 0028
Table 6-115. JTAG ID (JTAGID) Register Selection Bit Descriptions
BIT NAME DESCRIPTION
31:28 VARIANT Variant (4-Bit) value. A read from this field always returns 0b0000.
27:12 PART NUMBER Part Number (16-Bit) value. DM6437 value: 1011 0111 0010 0001.
11-1 MANUFACTURER Manufacturer (11-Bit) value. DM6437 value: 0000 0010 111.
0 LSB LSB. This bit is read as a "1" for DM6437.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 297
l TEXAS INSTRUMENTS r——*} J—\—k—\_ | i ‘ )C HHfl
6.24.2 JTAG Electrical Data/Timing
TCK
TDO
TDI/TMS/TRST
1
2
34
2
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 6-116. Timing Requirements for JTAG Test Port (see Figure 6-57 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. UNIT
MIN MAX
1 t
c(TCK)
Cycle time, TCK 33 ns
3 t
su(TDIV-TCKH)
Setup time, TDI/TMS/ TRST valid before TCK high 2.5 ns
4 t
h(TCKH-TDIV)
Hold time, TDI/TMS/ TRST valid after TCK high 16.5 ns
Table 6-117. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port(see Figure 6-57 )
-7/-6/-5/-4
-L/-Q6/-Q5/-Q4NO. PARAMETER UNIT
MIN MAX
2 t
d(TCKL-TDOV)
Delay time, TCK low to TDO valid 0 14 ns
Figure 6-57. JTAG Test-Port Timing
Peripheral Information and Electrical Specifications298 Submit Documentation Feedback
l TEXAS INSTRUMENTS SPRAALQ
7 Mechanical Data
7.1 Thermal Data for ZWT
TMS320DM6437
Digital Media Processor
www.ti.com
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
The following table(s) show the thermal resistance characteristics for the PBGA–ZWT and ZDUmechanical package(s). For more details, see the Thermal Considerations for TMS320DM64xx,TMS320DM64x, and TMS320C6000 Devices Application Report (literature number SPRAAL9 ).
Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZWT]
NO. °C/W
(1)
AIR FLOW (m/s)
(2)
1 R Θ
JC
Junction-to-case 5.4 N/A
2 R Θ
JB
Junction-to-board 16.0 N/A
3 26.6 0.00
4 R Θ
JA
Junction-to-free air 21.9 1.0
5 20.4 2.00
7 0.0 0.00
8 Psi
JT
Junction-to-package top 0.1 1.0
9 0.2 2.00
11 15.9 0.00
12 Psi
JB
Junction-to-board 15.8 1.0
13 15.3 2.00
(1) The junction-to-case measurement was conducted in a JEDEC defined 1S0P system. Other measurements were conducted in a JEDECdefined 1S2P system and will change based on environment as well as application.For more information, see these three EIA/JEDEC standards:EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)EIA/JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount PackagesJESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.(2) m/s = meters per second
Submit Documentation Feedback Mechanical Data 299
l TEXAS INSTRUMENTS
7.1.1 Thermal Data for ZDU
7.1.2 Packaging Information
TMS320DM6437
Digital Media Processor
SPRS345D – NOVEMBER 2006 – REVISED JUNE 2008
www.ti.com
Table 7-2. Thermal Resistance Characteristics (PBGA Package) [ZDU]
NO. °C/W
(1)
AIR FLOW (m/s)
(2)
1 R Θ
JC
Junction-to-case 7.7 N/A
2 R Θ
JB
Junction-to-board 10.5 N/A
3 19.7 0.00
4 R Θ
JA
Junction-to-free air 15.5 1.0
5 14.3 2.00
7 4.9 0.00
8 Psi
JT
Junction-to-package top 5.1 1.0
9 5.2 2.00
11 10.4 0.00
12 Psi
JB
Junction-to-board 9.8 1.0
13 9.6 2.00
(1) The junction-to-case measurement was conducted in a JEDEC defined 1S0P system. Other measurements were conducted in a JEDECdefined 1S2P system and will change based on environment as well as application.For more information, see these three EIA/JEDEC standards:EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)EIA/JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount PackagesJESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages(2) m/s = meters per second
The following packaging information and addendum reflect the most current data available for thedesignated device(s). This data is subject to change without notice and without revision of this document.
300 Mechanical Data Submit Documentation Feedback
I TEXAS INSTRUMENTS Samples Sample: Sample: Samples Samples Samples Samples Samples Samples
PACKAGE OPTION ADDENDUM
www.ti.com 17-Jul-2021
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
TMS320DM6437ZDU4 ACTIVE BGA ZDU 376 60 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 L2
DM6437ZDU
TMS320
4
TMS320DM6437ZDU6 ACTIVE BGA ZDU 376 60 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 DM6437ZDU6
TMS320DM6437ZDUQ6 ACTIVE BGA ZDU 376 60 RoHS & Green SNAGCU Level-3-260C-168 HR L1
DM6437ZDUQ
TMS320
6
TMS320DM6437ZWT4 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 L2
DM6437ZWT
TMS320
4
TMS320DM6437ZWT5 NRND NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 L2
DM6437ZWT
TMS320
5
TMS320DM6437ZWT6 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 L2
DM6437ZWT
TMS320
TMS320DM6437ZWT7 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 L2
DM6437ZWT
TMS320
7
TMS320DM6437ZWTQ4 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 L1
DM6437ZWTQ
TMS320
4
TMS320DM6437ZWTQ5 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 L1
DM6437ZWTQ
TMS320
5
TMS320DM6437ZWTQ6 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR L1
DM6437ZWTQ
TMS320
I TEXAS INSTRUMENTS Sample: Sample:
PACKAGE OPTION ADDENDUM
www.ti.com 17-Jul-2021
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
6
TNETV1644ZDU6 ACTIVE BGA ZDU 376 60 RoHS & Green SNAGCU Level-3-260C-168 HR 0 to 90 DM6437ZDU6
TNETV6437INZWTQ5 ACTIVE NFBGA ZWT 361 90 RoHS & Green SNAGCU Level-3-260C-168 HR -40 to 125 L1
DM6437ZWTQ
TMS320
5
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
I TEXAS INSTRUMENTS
PACKAGE OPTION ADDENDUM
www.ti.com 17-Jul-2021
Addendum-Page 3
MECHANICAL DATA Sfxifx 36” 3‘ ASTKT RA GR 7 ARV/"xv \ 4 . J: T v OOOOOOOOOéOOOOOOOOO 000000000 000000000 OOOOOOOOO$OOOOOOOOO 000000000 000000000 OOOOOOOOO§OOOOOOOOOi4L CODOOOODO DODGODOOOi‘r 000000000 000000000 OOOOOOOOOgOOOOOOOOO OOOOOCOOOEEOOOOOOOOO i *09-90—9—09—9 990969-607 000000000 000000000 000000000 000000000 OOOOOOOOO$OOOOOOOOO 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 OOOOOOOOO$OOOOOOOOO COOOOOODOQOODOOOOOO NO'ES' AH Hnecr dimensmrs e m m'mmmrs Dxmensiowmq an: tu‘eranc'wg per ASME w W 199/. Tm drawer ‘5 3mg :0 change wnrau: name, Tm \s a =34ree sewer baH deswgn mHs wmhm JEUEC MUizlb Oom> {if TEXAS INSTRUMENTS Ww.ti.com
MECHANICAL DATA ZDU (S—PBGA—N376) PLASTIC BALL GRID ARRAY 7,00 VP 0 m 0 0 r 0000 0000 0000 00000 00000 00000 00000000000 000000 000000 000000 000000 000000 000000 00000000000000000000 I 000000000 00000000000000000000 00000000000000000000 00000000000000000000 000 I3 I5 I7 I9 TI '0 I2 I4 IE IS 20 22 Boituvr VIew IH’iE L23675274/E II/OE NO'ES' NI IInec' dImenSIurS c'e III m'IImeIerS TI‘IS deInq IS subje», 0 change mm: Home, IUIIS wIIhm JEDLC MEIrIz)‘ Immuy cmanccd mcIdcd pasch package mm m: SLq (HSL) Th3 IS C Icadifrcc so do“ baII CCSIgr mcnm> ‘4" Ms INSTRUMENTS www.li.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,
costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated